
Electronic Communications of the EASST
Volume X (2008)

Guest Editors: Romain Rouvoy, Mauro Caporuscio, Michael Wagner
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the
First International DisCoTec Workshop on
Context-aware Adaptation Mechanisms for

Pervasive and Ubiquitous Services
(CAMPUS 2008)

Share Whatever You Like

Sebastian Böhm, Johan Koolwaaij and Marko Luther

12 Pages

 ECEASST

2 / 13 Volume X (2008)

Share Whatever You Like

Sebastian Böhm1, Johan Koolwaaij2 and Marko Luther1

1DoCoMo Euro-Labs, Munich, Germany
2Telematica Instituut, Enschede, The Netherlands

Abstract: To leverage proactive context-aware services for mobile handsets, an
architecture for the management, aggregation and distribution of information is
required. This work presents a framework that has been developed to realize an
extensible infrastructure in which personal information can be shared with others
while on the go. Access control mechanisms restrict the distribution of data based on
social relationships and the validity of context conditions.

Keywords: Context management, distributed access control, mobile application,
ontology reasoning, context aggregation

1 Introduction
The future of mobile services is meant to be context-aware. Context-aware services have long
been seen as the natural advancement of location-based services, which were introduced more
than five years ago. At last, today’s mobile handsets are offering various features that place
this progress within reach, being equipped with various sensors, sufficiently powerful
computing resources and the possibility to manage all kinds of personal information. And yet,
their most important asset may be their omnipresence. This circumstance quickens the interest
in intelligent services, designed to adapt to the user’s current situation. Here, a framework for
context aggregation is needed to manage the distribution and combination of information from
various sources.

Our context management framework (CMF) builds on initial work [1] accomplished within
the IST-project MobiLife1 [2]. Today, the CMF represents an open network of distributed and
highly interconnected components to gather, aggregate and further exchange context
information proactively. It enables the transformation of quantitative context information into
qualitative statements about a user’s given situation. Share whatever you like reflects some of
the CMF’s main requirements on context distribution and access control. Sharing personal
memories and experiences clearly involves a number of privacy issues that need to be carefully
considered from the start. The CMF architecture tackles these constraints without
compromising its open and extensible nature. IYOUIT2 is the reference implementation of the
CMF and comes as a mobile client that allows users to share personal information while on the
go and a Web-based portal to stay in touch with the online community. IYOUIT’s mobile
client runs on most Nokia Series 60 smartphones and succeeds its predecessor ContextWatcher
[3][4] by adding authentication and privacy protection mechanisms as well as lifting its system
architecture to a flexible, broker-centric one. The general aim is to make it easy for an end-user

1 http://www.ist-mobilife.org
2 http://www.iyouit.eu

Share Whatever You Like

Proc. CAMPUS 2008 3 / 13

to automatically record, store, and use context information, e.g. for personalization purposes,
as input parameter to information services or simply to share this information with others.

The process of enriching gathered context data to qualitative information is exemplified in
Section II. In Section III an overview of the underlying system architecture is provided and
insights into several core components as well as the applied delegation-based authentication
mechanism is given. Access control mechanisms are discussed in Section IV, focusing on the
actual directive management, context filtering and the subsequent verification of the latter.
IYOUIT is described in detail in Section V and related work in the field of context-aware
systems, access control mechanisms and their applications is described in Section VI.
Concluding remarks can be found in Section VII.

2 Context Aggregation
The main objective of the CMF is to allow for developing context-aware (mobile) applications
that gather context data from various sources. Raw context data, e.g. sensor outputs like the
currently visible cell ID on a mobile phone do often not provide meaningful (human
understandable) information right away. Instead, the aggregation of such context data and the
subsequent combination with other pieces of information is regarded as an essential process to
enable the development of intelligent applications that make sense of the user’s surrounding.
Figure 1 illustrates a simplified context aggregation to resolve a user’s current location and to
reason about his location traces recorded over time.

The cell ID obtained from the mobile phone is transmitted to the LocationProvider, a
networked CMF component, to be resolved into an actual address record. It stores all recorded
location traces and applies clustering techniques to identify frequently visited places of the
user, e.g. his home or office [5], while remaining independent of any concrete mobile network
infrastructure. This simplified example already implies the need for a context management
infrastructure to also facilitate authentication, access control, easy extensibility as well as the
combination of and the reasoning about different context information.

3 System Architecture
The CMF has been designed as an open, distributed and extensible framework to allow other
parties to join the network and to enrich existing services for mobile handsets. Only a minimal
set of components is regarded as being owned by the network operator and may have access to
the users’ credentials. Access control and authentication techniques allow for integrating

Address,
Place

Cell ID Cell ID

Address

Location
Provider

External Data
Source

Mobile
Sensor Inference

 Engine
Location
Traces

Figure 1: Simplified context aggregation

 ECEASST

4 / 13 Volume X (2008)

external partners or data sources without the threat of malicious data abuse. To do so, several
essential requirements of the CMF were identified.

Instant revocation: The user as well as the network operator needs to have the ability to
revoke access rights to context information at any time from certain components or distinct
users.

Secure authorization and delegation: The user’s credentials (his unique identifier and
personal password) should not be propagated among uncontrolled components to prevent un-
trusted components from collecting personal information on behalf of the user without his
explicit permission.

Abstraction and enrichment of context: Historic context information is stored within the
respective component to allow for clustering and further data mining to abstract from lower
level data, as exemplified in Figure 1.

Proactive requests: The user himself must not explicitly trigger the actual context retrieval.
In addition, for answering a given context request, the number of components concerned
cannot be predetermined. Computations on gathered context information to gain more
qualitative information may require several components to autonomously request context from
other components.

In general, the CMF architecture can be conceptually categorized in several groups of
components that serve a distinct purpose. ContextConsumers mainly retrieve context
information from various sources, the ContextBroker and the ContextHarvester provide means
of easy context lookup and context gathering, whereas ContextProviders (CP) aggregate
contextual data to provide meaningful information for specific services. Three management
components are major constituent parts of the CMF to allocate basic functionalities that all
components within the framework rely on. All other components that can be subsumed in a
group of 3rd party applications act as external data source and may also provide additional
context visualization techniques.

A. Management Components
The IdentityManager maintains the list of all registered entities (components and users),
represented by uniquely named principles (appID and entityID). Each context retrieval request
within the CMF is authorized by this central component to bar single components from
collecting and distributing highly sensitive data without explicit permission. Therefore we
introduced an authentication scheme based on ticket verification, similar to the Kerberos
approach [6], to allow 3rd party integration without the need to disclose the users’ credentials to
each component within the framework. This authentication scheme is described in more detail
in Figure 3, by means of a common context retrieval request.

The RelationManager enables the representation and exchange of qualitative social data.
Explicit facts about social relationships between users (e.g. family members, friends or
colleagues) are combined with the world knowledge encoded in an ontological model in order
to apply logic based reasoning. These reasoning mechanisms ensure the consistency of the
social data and allow for knowledge discovery techniques to complement the social network.
As a result, groups of users can be formed dynamically, based on qualitative relationships
managed by the RelationManager, further discussed in [7]. Explicit or implicit social
connections are made available for other CPs to further enrich their context information.
Apart from a subject and object entity as well as the actual relation predicate, each relationship
definition has additional attributes. The status of a relationship, for instance, describes if a

Share Whatever You Like

Proc. CAMPUS 2008 5 / 13

relation has been requested (the initial value for all relations suggested by the user), approved
(which means the object entity has already confirmed) or inferred, indicating that this relation
has been deduced. The complete set of relationships, including deduced relations, is stored
within a database to reduce query response times. Since the majority of requests are concerned
with retrieving information rather than modifying data, the underlying knowledge base does
not need to be involved. However, in case the set of approved relations has changed, either by
adding a new relation or removing an existing one, all active relationships are transmitted to
the inference engine to trigger the reasoning process. To model these qualitative social
relationships we developed an ontology, specifically designed as a social knowledge base for
the CMF. In contrast to most social networking services that only differentiate between buddy
– or friendships, the social ontology with its 50 defined relationships allows for very detailed
descriptions of all kinds of social connections between the users of the framework.

For providing personalized (mobile) services and applications, access control is always an
issue that needs to be considered. The PrivacyManager (PM) enables the definition of relation
and context-based access control directives to ease the process of managing ones personal
directives. Our approach ensures both, the users’ demand for privacy control and ease of use.
Therefore directives do not have to be bound to concrete implementations or services in the
framework but to abstract, general concepts of context. The user thus specifies a certain level
of detail to be revealed per context category, without knowing which components are
concerned with the actual execution and filtering of data. Social relationships allow for
defining simple group access directives to restrict the distribution of context information. For
instance, the user may specify that colleagues should only know the current city, whereas
family members are granted access to the detailed set of location information, e.g. up to the
street level. Further details on the proposed access control management can be found in
Section IV.

B. Context-Broker, -Harvester, -Consumer and -Provider
The ContextBroker and the ContextHarvester provide access to a repository of system
elements on the level of CPs (in the case of the ContextBroker) or on the level of context
elements (in case of the ContextHarvester). The ContextBroker implements a registration and
lookup service to enable the discovery of various CPs, based on the schema provided within
the CP advertisement. The ContextHarvester can be seen as a specialized CP that collects
context information across a range of other CPs. In supporting both, collections of context
types and collections of entities, it can be used to obtain heterogeneous context information for
various users or it may be used to obtain all personal information of a specific entity no matter
where the information is stored or managed physically.

The majority of components within the framework surely belong to the category of CPs. At
the time of writing more than ten CPs have been developed to provide services like local
weather forecasts, picture sharing facilities or sound recording, to name only a few. In
principle, a CP first gathers a certain type of information (e.g. the user’s cell-id) from a sensor
(for instance the mobile handset) or another CP to further process and enrich this information.
This procedure of context aggregation is taking place within each CP and is essentially
required for the subsequent (logical) combination of different context elements that, as a
whole, describe the situation of an entity [8].

 ECEASST

6 / 13 Volume X (2008)

C. Basic Datatypes
Context aggregation and the later
context combination across
components is one important
utilization of the CMF. Therefore
numerous datatypes have been defined
to leverage the exchange and
assessment of context data within the
framework.

Context Element: A context element
is an elementary piece of context
information that encapsulates the
information obtained from a CP. A
context element must at least include the CP’s unique ID, an identifier of the owner of the
respective piece of information as well as a number of parameters that hold the actual data
values. Figure 2 shows a context element as rendered in XML.

Parameter: A parameter object contains a name, a timestamp, a corresponding value and an
extensible list of attributes further categorizing the parameter value (including the ontology
reference and accuracy).

Context Query: A context query request
allows for retrieving distinct context
elements that comply with certain constraints
on the contents of context elements. The
context query object contains a filter
specified by simple and complex conditions.
Simple conditions specify a comparison
operator on values and attributes to select
distinct parameters of interest, while
complex conditions combine simple
conditions recursively via logical operators.
Applying a projection or summary operation
further restricts the result set.

ContextProvider Advertisement: The
advertisement includes a CP’s unique id and
a base URL to this service. Furthermore, it
provides the data scheme in the form of a
parameter hierarchy and a list of all featuring
entities as well as options. Each parameter
has been assigned a certain privacy level that
indicates the sensitivity of the data and
additional attributes such as the type or the

unit of measurement. Since each CP may also provide software packages for the mobile client
to make use of its public interface, the clientSoftware object indicates the availability of such
software components. As soon as the mobile client has been identified and all constraints on
downloading the package are fulfilled (e.g. the client’s platform or version number), the client
software can be delivered or updated.

Figure 3: Context retrieval sequence diagram

Figure 2: Context element

Share Whatever You Like

Proc. CAMPUS 2008 7 / 13

D. Authentication and Component Interaction
To realize an open, distributed infrastructure and to allow 3rd parties to provide their own
applications on top of the CMF’s core infrastructure, a corresponding authentication
mechanism needs to be in place. Two assumptions need to be considered that characterize
some basic principles of how context is distributed and exchanged in a standard request-reply
pattern, protected by common encryption techniques like https. All components that are not
regarded as being controlled by the network operator (and thus entirely comply to the
specification) are trusted in the sense that mandatory authentication and privacy mechanisms
need to be implemented. Components that violate these constraints, be it on purpose or due to
implementation flaws, are regarded as un-trusted. Furthermore, all communication paths need
to be secure so that no request or reply messages could be intercepted and decrypted. In
principle, two different types of authentication methods are applied within the CMF: user and
application authentication. The request ticket that needs to be issued together with the actual
context query is of the following form: <entityID,appID,entityToken,appToken>.

It includes an entityID, the requesting appID as well as two tokens. The entityID and the
entityToken are used for the user authentication to ensure that applications retrieving context
on behalf of the user are only granted access to those pieces of information the user is allowed
to see. This means that for each entity and each application (aka CP), a corresponding
entityToken exists. This token is issued by the IdentityManager (in case valid application
credentials are given) and needs to be verified on each request as illustrated in Figure 3.
Besides, the application authentication controls inter-component communication and requires a
valid appID and appToken. So, for each combination of ContextConsumer and CP, a
corresponding appToken exists, again issued and verified by the IM. All tokens are valid as
long as either the user or the network operator revokes former access rights to any context
retrieval on behalf of the user or disallows any component interaction. Instant revocation is
given, since all context requests are explicitly authorized by the IdentityManager. Once the
provided request ticket has been verified, the CP retrieves all appropriate access control
directives from the PrivacyManager.

4 Access Control
The data flow in-between services or components allows for much richer services that build up
on the knowledge made available. However, the network operator needs to be able to control
the data flow in order to prevent others from unchecked data storage and general data abuse. In
addition, the users themselves should be able to mark certain applications as trusted or
disallow access to personal information for unknown or unwished service providers as well as
other users. The proposed access control mechanisms are based on the social relationships
managed by the RelationManager and the subsequent logical combination with other context
data. In principle, three types of access control directives can be identified. Directives can
either be defined for concrete users, groups of users (based on explicit or implicit social
relationships) or certain context conditions. So besides role-based access control directives that
build upon a social network of users and the underlying ontological model, context-dependent
directives allow for directives that are bound to concrete context conditions (abstract
descriptions of the user’s surrounding). These conditions can be assigned to certain access
control directives in order to restrict the validity of directives to concrete situations. Context-
dependent access control directives are triggered in case certain conditions with respect to the

 ECEASST

8 / 13 Volume X (2008)

current context of a user are fulfilled. For instance, access to a business schedule may only be
granted to colleagues that are nearby, but only during office hours. In this case, context
information is actually the prime condition for deciding about access to, again, context
information. To further refine the type of information that is made available, we differentiate
between various granularities of context data with respect to their up-to-dateness. This means
that a user could forbid access to the last known context state (e.g. the current location), but
grants access to older or “out-dated” and therefore less critical information. The other way
round, granting access to only the latest information, and therefore concealing the context
history, prevents others from exploring issued data to analyze certain user behaviors.

The privacy decision point is realized in distributed components – the PrivacyManager
(PM) and all concerned CPs. The actual filtering of context information according to the
directives (specified by the user) has to be accomplished by each CP. Policy compliance
according to the given access control directives is warranted because each component that
processes a user’s context information must be granted access by the user and authorized by
the IdentityManager. Hence, the filtering of context information (see Figure 3) is accomplished
by the respective component that knows the structure and the semantics of the data. Even
though it would be in principle possible to establish a policy enforcement mechanism for
access control in a thoroughly trusted environment, this was never our original intention.
Instead, the CMF has been designed as a distributed, extensible framework that does provide
certain means to verify the applied context filtering.

A. Directive Management
Access control directives are defined by concrete context specifications, a subject entity, an
object entity or a certain relation predicate and the actual privacy level. The privacy level
defines to what extend a certain type of context will be made available. A seven-staged
granularity allows for fine-grained access control directives, ranging from no access to full
access. The context specification contains a unique identifier, a CP’s base URL, the parameter
path, an entity’s ID and an ontology reference (optional). However, the user does not have to
provide a specific CP ID or parameter path as part of the request. General user-defined
directives are automatically translated into concrete context specifications. To give an
example, adding an access control directive to prevent disclosing one’s current whereabouts,
the PM first retrieves all appropriate CP advertisements from the ContextBroker that provide
at least some spatial context information and computes all concrete parameter paths for the
appropriate CPs.

The usage of context dependencies is restricted to non-dependent context data, which means
that the validation of this condition must be directly answered by the corresponding CP. To do
so, the PM gathers all context info exclusively via a specified interface (getContext()) of the
appropriate CP since all context dependencies are modeled as context queries. Therefore, each
CP has to implement this interface so that no additional requests to other CPs are needed to
compute the last known state. In principle, this would result in a loop, since each CP would, in
turn, have to consult the PM again. To break the resulting loop, a CP is able to detect a request
that has been issued by the PM by its unique appID and the corresponding appToken. As
highlighted in Figure 3, the normal authentication scheme requires two distinct requests to the
IdentityManager. The first check authenticates the original request from a generic
ContextConsumer to the CP, the second time the request from the PM to the CP is verified. In
order to prevent the second authentication request, the IdentityManager automatically verifies

Share Whatever You Like

Proc. CAMPUS 2008 9 / 13

if the CP may also have access to the PM and eventually computes a secret token. This token
is then passed to the PM to be verified in order to retrieve the appropriate access control
directives.

Since a service infrastructure like the CMF undergoes frequent updates in terms of new
services being introduced or existing services being modified, all existing access control
directives must be adjusted dynamically. Once the ContextBroker has registered an update, the
PM automatically verifies established directives and applies the corresponding modifications.
In case a specific access control directive has been requested that has not been explicitly
defined by the user, a more general directive will be returned that covers the given constraints.
Similarly, requesting a directive for a specific entity might result in a directive that has been
defined for a certain relationship, if the requested entity is the role-filler of that relationship.
Also, the hierarchy of social relationships is considered, as represented within the social
ontology. So, if no specific directive is given for the wife relationship, more general directives
defined for all family members are returned.

B. User Interaction
The PrivacyManager is regarded as a controlled component, which means that only the user
may modify access control directives. Applications (e.g. other CPs) may only retrieve
directives that are concerned with their verified appID. To support the user in managing
personal directives, a management interface has been developed and integrated into IYOUIT’s
Internet portal.

Web-based User Interface: This interface integrates most access control and social
networking features into one compact and easy to use matrix-like interface, shown in Figure 4.

Its principle design has been inspired by
Almer’s work on access control
visualization techniques [9] during the
MobiLife project. In general, two main
views on access control directives can be
distinguished. The BuddyView lists all
approved contacts on the horizontal axis
and the main context types on the vertical
axis. Similarly, the RelationView allows
for defining group directives and
therefore shows all supported
relationships in the horizontal menu. In
case a certain context type on the left
hand side is highlighted, more specific
directives exist that can be revealed by
clicking on the respective parameter, as
shown in Figure 4 for the context type
weather and its sub-parameter
weather/location.

 Each main category of context information has its own symbol, whose actual size indicates
the respective context level assigned and therefore the amount of data revealed. So, defining
access control directives for the most common context types is a matter of clicking through the
respective icon sizes with hardly any effort. The controls on the right hand side provide filter

Figure 4: PrivacyManager Web-interface

 ECEASST

10 / 13 Volume X (2008)

for the current view, e.g. to show only directives for a certain access level, to add distinct sub-
categories of interest and to save or discard changes. Since access control directives can
potentially overlap, the PM has to compute the most specific directive. For instance, having
defined directives for all friends but also for one of your friends in particular would result in at
least two overlapping directives (in this example the directive that has been assigned to this
particular person would hold). Within the PM web interface, all directives that have been
derived from other facts are shown in grayscale, whereas colored icons represent explicit
definitions for concrete buddies.

Context Mirror: With the so-called context mirror, the user is able to verify the compliance
with the given access control directives by inspecting (his own) personal data through the
eye’s of someone else. This way, directives can be revised and access to context can be
withdrawn from applications that do not apply the filtering of data according to the directives.
The context mirror is reflected in a Boolean value in the functional interface of a CP and an
observer’s entity ID, found in all context elements. Whenever the context mirror is enabled,
the corresponding access control directives are retrieved from the PM and subsequently
applied to the user’s own context within the respective CP. The application of the context
mirror within IYOUIT is described in the next Section.

5 Mobile Client Application
IYOUIT is a research prototype that represents our prime implementation of the CMF to apply
context-aware technologies and methodologies in practice (including ontology-based

reasoning and access control techniques). In
short, IYOUIT facilitates the following usage
scenarios:
 Real time context sharing for the exchange
of qualitative information to keep track of
friends and family members in an
unobtrusive manner.
 Contextual tagging of user generated media
to describe the current context, to add
automatically generated titles as well as
descriptions to pictures, maps and sounds.
 Storage and simplified retrieval of context
data. Different views and context
visualization techniques assist the user in
finding useful information.
 IYOUIT is a tab-based application, in
which each tab either displays a certain type
of context information or accumulates
various pieces of information in a context
overview. The Me-tab is IYOUIT’s standard
entry point and highlights all recently
collected information. Clicking on one of the
entries, a more detailed view is provided
within the respective tab. The Buddy tab is
the central place for all real-time context Figure 5: IYOUIT's buddy tab

Share Whatever You Like

Proc. CAMPUS 2008 11 / 13

information of approved buddies, including their current whereabouts, latest activities, shared
photos and so on. Different views on context, various sorting orders and context-dependent ad-
hoc groups help finding interesting or newly gathered information, as illustrated in the upper
half of Figure 5. So besides grouping buddies with similar context (e.g. the same city or
weather condition), the Friends of friends group lists all IYOUIT users that have been deduced
as a rather close contact without being explicitly added by the user. This is a direct result of the
applied social reasoning by the RelationManager, to support the user in completing his
personal network of social contacts. Also part of the Buddy tab, the context mirror
functionality has been implemented to verify the context filtering that has been applied in the
respective CPs. Once the context mirror has been enabled (see lower screenshots in Figure 5),
different views on your own context are displayed to reflect the way buddies see one’s
personal data. In general, IYOUIT is capable of sensing, aggregating, combining and
distributing various types of context. Amongst others, this includes the user’s location, photos,
local weather data, nearby buddies or devices as well as personal experiences. Here, especially
the way spatial data is processed can be taken as an example for the context aggregation that is
taking place in the CMF. The location estimation can either be based on raw GPS coordinates,
currently visible cell IDs or triangulation. The final step in the process of spatial aggregation is
the application of a location-clustering algorithm to automatically detect frequently visited
places [5]. Those places can be labeled as “Home” or “Office” and linked to a concept within
the spatial ontology. Those places of interest have a qualitative meaning that allows others to
easily classify this information.

6 Related Work
Several computing infrastructures for managing context have been proposed to support the
rapid development of context-aware applications. All approaches generally provide a suitable
abstraction mechanism to separate the process of context gathering and distribution from the
core application logic. The Context Toolkit (CT) [10] is a prominent server-based platform,
which uses XML structures to represent contextual data and to hide sensor details. A query and
notification interface provides a standardized access to the data. Context providers and
interpreters store historic context information and serve as a context abstraction layer. Context
harvesters combine context information as well as repositories of services and components that
are currently available within the system. Even though, in principle similar to our approach,
the CT system only provides basic access control mechanisms for privacy protection. Foreseen
as one potential solution, context-dependent privacy rules are mentioned, without giving any
more details. Likewise, CT’s use of standard public-private key technology for authentication
does not allow for instantly revoking access rights in combination with delegation. In contrast
to the closed CT system, our target is to create an open context infrastructure as also proposed
in [11] to securely integrate external components using delegated credentials. Therefore, usage
control [12] generally seems to conflict with our main aim to allow for further processing of
context within trusted, external components. The aggregation and the logical combination of
context is one of the main principles of the CMF to realize context-aware services.

Another related approach in terms of shifting resource intensive context manipulations from
the mobile device to a service-oriented infrastructure is realized in the Context Distribution
Framework (CDF) [13]. Similar to our parameter structure, a hierarchical representation of
data elements is proposed to enable quality of context annotations. Furthermore, the CDF
facilitates ontology-based context representation and reasoning techniques to derive higher-

 ECEASST

12 / 13 Volume X (2008)

level data. However, this approach implicates severe scalability issues for expressive ontology
languages if applied as the main representation format [14]. Our attempt in making use of
ontology technologies is considerably different. Distinct higher-level data elements are
annotated with ontology references, making them available for further ontology reasoning.
This way, the overall scalability is not affected, while at the same time valuable reasoning
results can be achieved. Besides, the CDF does not address suitable mechanisms for privacy
protection in its current version. The question whether or not the CDF can be regarded as a
closed or extensible service infrastructure remains unclear, since no details on authentication
are given.

A context-driven evaluation of policies that describe the behavior of agents in a pervasive
computing environment is described in [15]. Similar to our context-dependent access control
directives, context changes trigger the actual evaluation process of agent permissions. All
policies are formalized in the Web Ontology Language (OWL) and consist of a context
condition and a corresponding action. These policies do not allow for the specification of a
subject, since policies are meant to be associated with context rather than subjects. Even
though this assumption is legitimate in a pervasive environment where interacting components
are unknown, our application area is different in this respect. Being able to identify
components and users within the CMF is an axiomatic prerequisite. Therefore, we consider
context in addition to subjects as attributes within our access control directives.

In [16], the authors focus on the exchange of spatial information and emphasize the
distributed nature of access control when multiple context sources with different granularities
are present. Access to location information is based on a concept called service trust. Trusted
components may receive information only in case an authorized request has been forwarded
and are thus required to sign all data returned to realize non-repudiation. However, it remains
unclear how misbehaving services can actually be identified by an entity in practice.

Most context-aware mobile applications available today have a strong focus on uploading
photos, including ZoneTag [17], Merkitys-Meaning3 or Shozu [18]. Categorizing photos and
other media content on the mobile handset is typically achieved by letting the user tag those
items. Tag sharing or tag suggestions (as offered by Zonetag) simplify this otherwise rather
time-consuming and solely manual process. However, in terms of automatically adding tags,
titles and descriptions to any user-generated content (including photos) based on the current
context (not just the user’s location), IYOUIT is much more flexible and capable. Jaiku4,
which has recently been acquired by Google, is a mobile application with a similar approach
compared to IYOUIT in sharing presence information with others. Through its connection to
Twitter, a popular location-based micro blogging site, Jaiku became one of the most prominent
mobile clients. With IYOUIT and the underlying CMF, our approach is to allow users to share
personal information without the need to enter data manually, but to automatically sense,
gather and process this information.

7 Conclusion
Initial usage statistics recorded during the 9 months development time and experiences that we
made with the former ContextWatcher community point out the interconnected and lively
nature of our system. Up to now, our 35 test users sent more than 250.000 location update

3 http://meaning.3xi.org
4 http://www.jaiku.com

Share Whatever You Like

Proc. CAMPUS 2008 13 / 13

requests (on average one every 15 mins), took 2300 photos, visited over 2000 cities in 23
countries and updated their local weather forecast about 3500 times. Based on those initial
trials, the implementation of the CMF specification proved feasible in terms of scalability and
practicability for managing context in a distributed architecture. More profound performance
evaluations will follow as soon as a critical mass of users has been reached with the IYOUIT
community. Focusing on access control and authentication to meet our users’ obligations in
terms of privacy protection without compromising the CMF’s overall extensibility through the
integration of 3rd party applications was deemed necessary but clearly entailed the complexity
of the overall system architecture. However, shifting expensive tasks and complex
computations to server components in the network made it possible to realize a lightweight
mobile client on the one hand, and rich services centered on qualitative context information on
the other hand. The aggregation and meaningful combination of context from various sources
through lower-level clustering or higher-level reasoning techniques can only be accomplished
with high-performance computing resources as provided by server components in the network
layer. IYOUIT and the CMF architecture will be constantly enhanced with new components
and services to underline IYOUIT’s living test-bed character and to further verify research
results with real context information. After all, sharing personal information in general and
qualitative context information in particular is fun and helps you keeping track of your
buddies. Share whatever you like, but only what you would like to share – with IYOUIT.

8 References
[1] P. Floréen, M. Przybilski, P. Nurmi, J. Koolwaaij, A. Tarlano, M. Wagner, M. Luther, F. Bataille, M. Boussard, B. Mrohs,

and S. Lau, “Towards a context management framework for MobiLife,” in Mobile and Wireless Comm. Summit, 2005.
[2] M. Klemettinen, ed., Enabling Technologies for Mobile Services. Chichester, England: Wiley & Sons Ltd., Sept. 2007.
[3] S. Böhm, M. Luther, J. Koolwaaij, and M. Wagner, “ContextWatcher – connecting to places, people, and the world,” in

Demo Proc. of the 5th Int. Semantic Web Conference (ISWC’06), November 2006.
[4] J. Koolwaaij, A. Tarlano, M. Luther, P. Nurmi, B. Mrohs, A. Battestini, and R. Vaidya, “ContextWatcher – sharing context

information in everyday life,” in Proc. of the Int. Conf. on Web Technologies, Applications, and Services (WTAS’06), 2006.
[5] P. Nurmi and J. Koolwaaij, “Identifying meaningful locations,” in Proc. of the 6th Int. Conf. on Pervasive Computing

(Pervasive’08), pp. 1–8, IEEE Computer Society, July 2006.
[6] B. Neuman and T. Ts’o, “An authentication service for computer networks,” IEEE Comm., vol. 32, pp. 33–38, Sept. 1994.
[7] S. Böhm, M. Luther, and M. Wagner, “Smarter groups – reasoning on qualitative information from your desktop,” in Proc.

of the Workshop on The Semantic Desktop, pp. 276 –280, 2005.
[8] M. Luther, Y. Fukazawa, M. Wagner, and S. Kurakake, “Situational reasoning for task-oriented mobile service

recommendation,” The Knowledge Engineering Review, vol. 23, no. 1, 2008.
[9] D. Almer, “Mobilife – the privacy display widget,” Master’s thesis, Stockholm, Sweden, 2006.
[10] A. K. Dey and G. D. Abowd, “A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware

applications,” HCI Journal, vol. 16, no. 2-4, pp. 97–166, 2001.
[11] M. Wojciechowski and J. Xiong, “Towards an open context infrastructure,” in Proc. of the Workshop on Context

Awareness for Proactive Systems (CAPS’06), pp. 125–136, 2006.
[12] R. Sandhu and J. Park, “Usage control: A vision for next generation access control,” in Proc. of the Workshop on Math.

Methods, Models, and Architectures for Computer Network Security, pp. 17–31, 2003.
[13] P. Pawar, A. T. van Halteren, and K. Sheikh, “Enabling context-aware computing for the nomadic mobile user: A service

oriented and quality driven approach,” in IEEE Wireless Comm. & Networking Conf. (WCNC’07), pp. 2529–2534, 2007.
[14] T. Weithöner, T. Liebig, M. Luther, S. Böhm, F. W. von Henke, and O. Noppens, “Real-world reasoning with OWL,” in

Proc. of the 4th European Semantic Web Conference (ESWC’07), pp. 296–310, 2007.
[15] R. Montanari, A. Toninelli, and J. M. Bradshaw, “Context-based security management for multi-agent systems,” in Proc. of

the 2nd IEEE Sym. on Multi-Agent Security and Survivability (MAS&S’05), pp. 75–84, 2005.
[16] U. Hengartner and P. Steenkiste, “Implementing access control to people location information,” in Proc. of 9th ACM Sym.

on Access Control Models and Technologies (SACMAT’04), pp. 11–20, 2004.
[17] S. Ahern, M. Davis, D. Eckles, S. King, M. Naaman, and M. Spasojevic, “ZoneTag: designing context-aware mobile media

capture to increase participation,” in Proc. of the Pervasive Image Capture and Sharing Workshop (PICS’06), 2006.
[18] M. Ames and M. Naaman, “Why we tag: motivations for annotation in mobile and online media,” in Proc. Conf. on Human

Factors in Computing Systems (CHI’07), pp. 971–980, 2007

