
Context Awareness Targeting User Needs

Herma van Kranenburg1, Johan Koolwaaij1, Ingrid Mulder1, and Henk Eertink1

1 Telematica Instituut, Brouwerijstraat 1, Enschede, the Netherlands

{Herma.vanKranenburg, Johan.Koolwaaij, Ingrid.Mulder, Henk.Eertink}@Telin.nl

Abstract. Mobile services and applications need to be able to react on changes
in the end-user’s context, such as available resources, user preferences, user
environment and situation. Context aware support functions assist in such
tailoring and should preferably not only allow applications to adapt to
(predicted) changes in the user context but also anticipate user intentions and
goals. This advances pro-active systems into pragmatic systems. The paper
gives an overview of this vision and examples of our context aware framework
and applications.

Keywords: context awareness, user centric design, pro-active responsiveness,
plausible user assistance

1 Introduction
Tailoring applications to the needs and situation of mobile end-users both increases
user appreciation and is a potential business enhancer. Satisfied users are likely to
accept and to pay for added-value personalized applications, tailored to their needs
and circumstances, always choosing the optimal communication means and serving
the user with appropriate assistance, while user disappointment eventually leads to
not-using such badly tailored applications. This gives the motivation to research and
develop functionality that enables applications to be ‘aware’ of the environment they
are working with. In general such functionality is coined ‘context awareness’.
We follow the definition by Dey [1] for context: being any information that can be
used to characterize the situation of an entity (where an entity can be a person, place,
physical or computational object that is considered relevant to the interaction between
a user and an application, including the user and applications themselves). In addition
we consider context from a user-centric perspective. Context-aware applications use
context to provide task-relevant information and/or services to a user [1,2]. Hence a
context aware system provides applications with the appropriate and relevant context
information that enables them to adjust optimal to the user situation.
One step beyond are ubiquitous attentive systems and pro-active systems that even
enable applications to timely react on upcoming changes in context hence on
beforehand changes have occurred [3]. Examples of ubiquitous attentive system
responses are predicting a train-traveller will arrive in his destination-city in 5
minutes, push the bus-time schedule to him as well as information on the bus
departure platform. In many pro-active systems we witness the push of potentially
interesting services and applications in combination with the predicted next user
location, for instance based on user preferences or application usage of users from the
same age, gender, etcetera. For truly user-centric tailored applications, the
attentiveness or pro-activeness should be targeted at for the user plausible and usable

results, recommendations, and contextual parameter-set predictions [4]. Such
pragmatic systems support the user’s intentions, his/her plausible needs and meant
goals. Feedback from our context aware validators is and will be used to better
understand and properly design context aware systems and in particular realize our
vision of supporting users with plausible and usable results.

In this paper we will explain our vision – from reactive via pro-active towards
pragmatic context aware system support. Our context management framework will be
described and we will show examples – including lessons learned, from some of our
context aware applications.

2 Vision
2.1 Evolution from Personal Service Environment to Ubiquitous Attentiveness

Our vision on tailored mobile applications and a user-centric system support
started with the Personal Service Environment [5]. This vision, depicting a user
surrounded by communication means, resources, terminals and applications nowadays
is still applicable. For instance in a recently started FP6 IP [6] one of the principles is
a distributed communication sphere, where a user with his terminal is considered in
relation to the resources and other users within reach of him. Our PSE could be seen
as a shell surrounding the end-user and taking care of discovery, negotiation, and
adapting of resources and applications to the end-user and his dynamic situation. We
extended the notion of a PSE into a concept coined ubiquitous attentiveness [3].
Ubiquitous attentiveness refers to the combination of ‘ubiquitous computing’ (i.e. lots
of devices with communication capabilities), ‘information systems that provide
context information’ and ‘pro-active responsiveness’ of applications. This pro-active
responsiveness feature means that applications can timely react on upcoming changes
in the context of the end-user, including the network and the context of any of the
services that are used. A (wearable) system is ubiquitously attentive when it is
cognizant and alert to meaningfully interpret the possibilities of the contemporary
user space and intentionally induces some (behavioral/ system) action(s). Awareness
of the contextual parameters that are relevant for the user, exchanging this
information across and between (heterogeneous) domains and the pro-active
responsiveness of the ubiquitous environment are thus important ingredients that are
more elaborated on in [3]. An example of a ubiquitous attentive system response is
predicting the next user location or next user-activity and pro-actively pushing route-
assistance or entertainment services to him. An example on access network level is:
while coming into reach of several Wi-Fi hotspots, instead of triggering a handover to
the first sollicitated one, by taking into account additional context parameters, like
travelling trajectory and predicted overlapping period with certain access network a
handover to a more favorable upcoming access network will be initiated.

2.2 Pragmatic systems targeting Usable and Plausible Support

We envision that for truly user-centric tailored applications, the attentiveness or pro-
activeness should be targeted at for the user plausible and usable results that not only
takes into account the (predicted) changes in the (mobile) end-user environment, but
also anticipates end-user’s intentions and goals [4]. We called such systems
pragmatic. An example illustrating this is an end-user pointing at a tv-screen, asking

“brighter please”. A correct system response would be to make the screen brighter,
however this would deteriorate the screen settings; while a usable system response
would be to turn down the room lights or close the curtain, leading to a perceived
brighter screen. Hence we expect in a pragmatic system that plausible and usable
information and responses prevail over correct ones, and as such enhance and
improve pro-active tailoring of applications and services.

To realize a pragmatic system, one needs to overcome many challenges. These
both include understanding user intentions and goals and translating these into
machine readable input as processing this input together with the contextual
parameters. The processing functionality (‘reasoners’ in our context management
framework, see section 3.1) in pragmatic systems will heavily rely on prediction
techniques, reasoning techniques capable of processing vague and uncertain
information, user behavior analysis modules, recommender and learner components
[4]. Pragmatic reasoner components are needed that learn from user behavior and
extend their knowledge base with learned rules for certain usage situations. Domain-
specific knowledge bases are part of so-called expert systems; computer programs
that provide solutions to search problems or give advice on intricate matters by
making use of reasoning mechanisms. Expert systems can emulate human reasoning
using appropriate knowledge representations, they can learn from past experiences by
adjusting the reasoning process to follow promising tracks discovered on earlier
occasions, and they can apply rules of thumb (‘heuristics’) to ‘guess’. These systems
can make use of logical rules, probabilistic reasoning techniques and mechanisms that
can handle uncertainty, as well as use semantic web technology. Concepts like beliefs,
goals, intentions, events and situations, often including the use of ontology make
these methods suitable for pragmatic systems. Proper inter-working of the behavior
analysis modules, learning components and prediction engines is, of course, required.

3 Examples of context-aware applications
In this section we will describe various context-aware applications we developed in
different projects. We intend to use the feedback from our context aware validators to
better understand and properly design context aware systems and in particular realize
our vision of supporting users with plausible and usable results.

3.1 Context Management Framework

We designed and realized a context management framework [7] that we can extend in
a flexible manner. Our system comprises components taking care of sensing,
collecting and processing contextual information – the Context-Source components in
Fig 1– and discovering and providing access to sources of contextual information –
the Context-Broker component.
messenger wrapper, which connects to Messenger software and delivers information
on the status of a user on his PC or laptop and a GPS location wrapper, which is a
wrapper around a Bluetooth-enabled GPS receiver connected to a Symbian phone.
The role of the Context-Broker is to provide access to sources of contextual
information, for which it uses a Context-Source Registry. The function of the
Context-Source is to provide for relevant context and triggers by monitoring the
environment. Relevant context relates to context processing challenges such as the
information should be at the right semantic level, delivered at the right moment, in the

requested format, conflicts resolved, etcetera. A challenge in itself is to deduce by the
system (hidden) user intentions and goals; what constitutes usable and plausible and
how should the system interact in a non-obtrusive way appreciated by the user.

Often the requested information is not straightforward available, and hence
available information needs to be reasoned on, interpreted, combined with
information from other sources, and entailed information needs to be inferred. Such
derived contextual information is viewed upon as a new Context-Source which is
essential in our architecture: different layers of Context-Sources can be stacked on top
of each other; calling on each others interface thereby constituting a dependency
hierarchy or constellation of Context-Sources.

Fig 1. Functional architecture of our Context Management Framework.

In gathering contextual information we use wrapper components. For example a
Reasoning bears many challenges in itself. In simple words, context reasoning is
about deducing entailed contextual information from the various sources of context
info, that is linked to real context data. This requires grounding; linking of your
models and meta-models used in the inferring process to real context data. For the
models, classical engineering methods can be used, but also several complex network
modeling methods exist. The challenge is understanding which, why, when and how
specific inference mechanisms compliant with multiple network contexts are used by
and are valuable to people. In Fig 2 it is depicted how raw network data (e.g. from
sensors) can form low-order context, while interpretations and combinations of lower-
order contexts can yield higher-order contexts. Typical in low order e.g. Bayesian
models used, while in higher order ontology reasoning, extended with rule-based
inference can be used. In the project MobiLife (see section 3.4) this is, among others,
researched upon.

+InferContextInfo()
+DiscoverInferenceRule()

«AbstractComponent»
Context-Based Reasoner

+InterpretKnowledgeBase()

«AbstractComponent»
Inference_Engine

«AbstractComponent»
ContextServiceAdapter

«AbstractComponent»
ContextSource

«AbstractComponent»
ContextWrapper

«AbstractComponent»
ContextAggregator

+DefineRule()
+DeleteRule()
+DiscoverRule()

«interface»
ReasonerInterface

«AbstractComponent»
ContextPredictor

-Source

*

-Sink*

«AbstractComponent»
AmbiguityResolver

1*

«AbstractComponent»
ContextBroker

«AbstractComponent»
ContextSourceRegistry

«uses»

«uses»

«uses»«uses»

Function: to provide for relevant context &
triggers by monitoring the environment

Interpreted/derived context:
‘available’ as new context source

Straightforward supplied
context info; wrapped

Reasoner IF allows for specification of rules
by eg ASPs or controller functions or other CS

Inference engines interpret the
appropriate knowledge bases
(heuristic or domain specific knowledge)

Fig 2. Reasoning schematics. Fig 3. Compass screenshot. Fig 4. ContextWatcher

screenshot.

3.2 Compass

One of the most well-known and well-tried application domains for context-aware
applications is tourism. In this domain, we have run an early pilot with the Compass
application in 2003. Compass stands for context-aware mobile personal assistant, and
is essentially a digital city guide that harvests touristic information from a wide range
of on-line information services, based on the current location and interest of an
individual tourist.
This application was built upon a context-aware service toolkit, developed in the
Freeband WASP project [8]. The toolkit is tailored towards re-use of components and
developer convenience and all components are exposed as web services. The
screenshot in Fig. 3 shows an example where historic pictures (1880-2003) coming
from different sources (monument care, municipal archives, personal collections, ...)
are uniformly displayed on a map on the mobile phone, pruned based on the user’s
location close to the railway station and his interest in architecture. Clicking an icon
results in a real-time information request to one of the services. The Compass
application runs on Symbian, but advanced features require a Sony Ericsson in the
P800/P910 range.
Compass is tested in a small trial in Enschede with tourists, inhabitants and experts
walking different routes in the city center in early 2004. Some teams wandered
through the city without a specific goal, just like tourists tend to do, other teams were
instructed to simulate a young couple with child interested in city architecture or to
follow a pre-defined city walk in Compass. In general, the teams were impressed by
the new angle of looking at the same city that Compass provided, but at the same time
it was judged as too complex for the normal tourist. This complexity was mainly in
working with a PDA style phone with a stylus for the first time, the small screen with
the different tabs, and unexpected delays because of the GPRS connection, but also
the context-aware abilities of the Compass application necessarily cause unpredictable
behaviour, which was not always appreciated by the user. However, in general the
users liked the surprise effect that the system points them at unexpected places or
present them with new information about known places. They also value the aspect
that it is at all times possible to request information about nearby places, be it
monuments or functional places such as shops or nearby toilets, and also have an easy

Low Order Context Information
e.g. Latitude, Longitude Coordinates

Higher Order Context Information
e.g. Near_Mirror_Display

Interpretations and combinations

‘Raw’ Sensor Data

overview of where their friends are in the city. For local inhabitants, the ability to
browse through the different periods in the history of their current location was an
eye-opener, which was very much appreciated.
From a design and implementation point of view we found that a) most parties that
have information about the points of interest in a city, like tourism offices and
national heritage (potential service providers), do not have enough technical
experience to expose their information assets via web services. Furthermore their
information assets sometimes need heavy post-processing (like enriching data with
latitude-longitude information or normalization of old maps) to make them suitable
for application in location-based services, b) device independence is very hard to
achieve. Although being our initial goal we added about 10% of native code to the
generic JAVA application code to work with the phone camera and jog dial, which
does not generalize to other devices, unfortunately, c) battery life becomes a limiting
factor working with Bluetooth, lit screen, and GPRS continuously, and d) the platform
offers functionality that is general enough to support other context-aware applications.
For example we also developed a find-a-new-home application based on cell-id
positioning techniques using the same platform as well as some other applications.

3.3 Abel

The experiences gained in the Compass trial were the basis for the development of
Abel [9]. Abel is a digital guide for tourists who explore Twente (the region around
Enschede) by bike, and it is commercially available as of April 2006. Abel basically
guides tourists along predefined routes between hotels, and alerts them when points of
their interest are nearby. This time we spend most of the development time on a)
limiting (and not extending) the functionality for the tourist to what is really needed,
b) management functionality for the commercial operator, c) making the application
stable and fool proof, and d) practical issues like GPS fast fix, extending battery life
time, mounting on the bikes, etcetera. Abel still has to prove itself in practice at the
time of writing, but the early tests look promising. Of course, a point of concern stays
the delivered content. One of the challenges of Abel is to have at least a basic but high
quality content set ready before the tourists arrive in summer 2006.

3.4 Context Watcher

Context-aware life blogging is like writing your personal diaries in an automated
fashion. It is no bother at all. A mobile application developed in the MobiLife project
[10], named the Context Watcher automatically connects to available sensors, logs the
information, detects patterns over time, and generates daily summaries about your
location, activities and moods, and environmental conditions [11]. The Context
Watcher is written in Python, and runs on Nokia Series 60 mobile phones (see
screenshot in Fig 4). The aim of the Context Watcher is to make it easy for end-users
to automatically record, store, and use context information. This can be done for
personalization purposes, as input parameter for information services, or for sharing
information with family, friends, and colleagues, or even just to log them for future
use or to provide a mirror for the user to see his own behavior, e.g. how many times
did I visit grandmother last year?

The vision behind context-aware life blogging is that man is a social being who
likes to communicate about his or her experiences. The Context Watcher facilitates

that process by enabling the user to submit pictures from his mobile device that are
tagged with information about the context in which the picture was taken, so that title
and description can be automatically generated, e.g. “I was on [business trip] together
with [Henk] and [Bernd] in [Oulu] and I made this picture of the [Alexanderkatu]
while traveling [with public transport] to the [summer school]”, where all the
information between brackets is auto-generated. And pictures are easily discoverable
by posing a simple context query like “all pictures in Amsterdam together with Bernd
when it was snowing”. A second step is that the user can enable the Context Watcher
to automatically generate daily summaries of his activities and send that to a (public
or private) blog. Such a summary can be configured by the user and might contain an
overview of all pictures of that day, the visited places, time spend there, the people
you met and for how long, the weather at your location etcetera.
The Context Watcher is a thin client that handles the interaction between locally
connected sensors and remote providers of context, such as for location, wellness,
experiences, and photos, plus visualization and interaction in a user interface. Context
reasoning and enhancement capabilities vary from enhancing e.g. bar code
information to book description and personal interest profile, and reasoning to find
e.g. someone’s frequently visited places based on historic location tracks and
automatic tagging of the places.
The Context Watcher is running since March 2005, and has a user base of more than
150 persons of which about 50 are active each month. These users have formed many
relationships, and in their hundreds of thousands context traces about 850 frequently
visited places are detected. What the users liked most so far is 1) the possibility to
know where the others are and to keep in touch without having to approach them
directly, 2) easy access to services because the input parameters are automatically
provided contextual parameters (e.g. local weather with one click, rich picture
submission with one click, easy public transport info, etcetera), and 3) the sharing of
context information across different (mobile) applications and web sites, including
Flickr.com and their personal blogs. Sharing information via these channels with non-
users of the Context Watcher (e.g. parents) was perceived as added value.
The Context Watcher application is freely available from [12].

3.5 Smart homes and your context

The Ambient Intelligence vision [13] focusses on embedded, distributed,
computational power in combination with sensors and actuators in normal
environments like homes, cars, and offices. This integration results in smart
environments that are able to adapt their services to its current inhabitants. We are
currently studying the applicability of our context management framework [see
section 3.1] for these intelligent environments in the Amigo project [14]. We start
from the observation that intelligent environments are able to do multiple things: trace
the users, and observe the interactions between the users and the services offered by
the environment (e.g. watching TV, switching on the light, listening to a particular
radio station, making coffee). In an intelligent Amigo home all interactions between
the users and the devices are through services, that can be automatically discovered,
and have a common security model. Therefore the environment is able to monitor
service usage and can derive ‘regular patterns’ in the activities of persons (e.g.
grandma always goes to the bathroom first, then to the kitchen, switches on the radio,
and makes some coffee). This knowledge may enable future services, such as

switching on the light just before grandma enters the kitchen, or automated selection
of her favorite radio channel.
In Amigo our approach is to combine intelligent environments with personal mobility
[15]. For that, we defined the concept of Personal Amigo Device (PAD), see Fig. 5..
This device is able to operate as a trust-broker between your home and your current
Amigo-enabled location. This PAD is seen as a guest-device in the current
environment, and uses (typically) a cellular connection to its home. This scenario
makes it possible for the PAD to provide detailed information (e.g. temperature,
location, nearby users) towards its home environment (privacy rules permitting).
Furthermore, it not only conveys contextual information, but also information about
the available services. This enables one to directly use devices and services between
the two environments without involving the PAD (that is only involved in the creation
of the association and configuring the firewalls of both homes). In this scenario, the
current context of the user includes the services of its actual environment; in other
words, it closely interacts with the service-discovery mechanisms of both homes. This
PAD concept enables services based on buddy lists (e.g. gaming, watching TV
together) to make use of devices in the environment, instead of only personal devices.
So you are able to take (virtually) part in a game with family members when in an
Amigo enabled hotel-room, using the hotel TV as your interface.

Fig 5. Personal Amigo Device scenario. Fig 6. SocioXensor compared
 to other methods [18].

3.6 SocioXensor

Current research into context aware applications stresses the relevance of using
context information in applications in order to improve desirable properties such as
social translucence (see e.g. [16,17]). Despite occasional design successes such as
Presence and Instant Messaging applications, researchers are still lacking a systematic
understanding which context information is relevant in what kind of situations and
which kind of applications. At the same time, designers of context-aware applications
face design issues like: selecting which context information should be conveyed or

Visited homeVisited home

PAD

Service
discovery

Context
Management

subscribe

Discovery
Agent

Context
Agent

Visited homeVisited home

PAD

subscribe

Discovery
Agent

homehome

Service
discovery

Gateway

homehome

Service
discovery

Context
Mgt

publish

Gateway

Gateway

Context
Agent

Context
Mgt

Service
discovery

Visited homeVisited home

PAD

Service
discovery

Context
Management

subscribe

Discovery
Agent

Context
Agent

Visited homeVisited home

PAD

subscribe

Discovery
Agent

homehome

Service
discovery

Gateway

homehome

Service
discovery

Service
discovery

Service
discovery

Context
Mgt

Context
Mgt

Context
Mgt

publish

Gateway

Gateway

Context
Agent

Context
Mgt

Context
Mgt

Context
Mgt

Service
discovery

Service
discovery

Service
discovery

Situated
 ness

Obtrusivenes
low high

low

high

Lab exp. interview survey

logging experience
sampling

diary ethnograph

aggregated to other human users (who then interpret that information), and selecting
which context information is predictive enough such that it can be interpreted by
applications. Although many methods exist to study social phenomena, including
interviews, focus groups, surveys, laboratory experiments, ethnography, diary studies,
logging and experience sampling, obtaining the right answers to design context aware
applications proves to be rather complicated [18]. With our SocioXensor approach we
intend to complement existing data collecting methods, compare Fig. 6. SocioXensor
is a research instrument for field trials in experience and application research. It aims
to strengthen logging and experience sampling by combining them with contemporary
mobile and wearable devices such as smartphones and PDAs. Such devices are
personal in nature, stay and travel with one person most of the time and consequently
enter various contexts of that person (e.g., home, work, and mobile context).
SocioXensor is a toolkit that makes use of the hardware and software functionalities
built into mobile devices for which we plan to use our context management
framework. The goal is to collect information about how users experience a setting or
applications. This includes aspects of functionality and usability, and emotional
aspects. SocioXensor collects: objective information of human behaviour within a
specific context, such as where and how communication takes place; usage
information of applications, like duration of use and keystrokes usage; and subjective
data, reflecting the mood of the user, like being stressed, happy, sad.
SocioXensor allows scientists to gain a much deeper and dynamic insight into the
relations between user experiences, human behaviour, context, and application usage.
It’s results can be applied both for formative and summative evaluation, which is
further elaborated on in [19].

4 Future Work and Conclusion
Context awareness can add value to applications as perceived by end-users. We
consider the following key aspects of context aware pragmatic systems: awareness of
the contextual parameters that are relevant for the end-user; providing the information
space for modelling, storing and managing the relevant contextual parameters;
exchanging the relevant contextual information across and between (heterogeneous)
domains; pro-active responding and adapting of the ubiquitous environment
(including the system behaviour, applications, but also sensors in the environment) on
the dynamic changing context; and predicting the changes in the (mobile) end-user
environment, and anticipating end-user’s intentions and goals.
Lessons learned from our context aware applications include that end-users
unfamiliarity with mobile terminals and mobile applications indicate that user
appreciation of plausible and usable context aware support is something for the (far)
future. Buddy awareness, indirect staying in touch and easy service access are
appreciated by users. We continue our research and prototype validating and will use
upcoming SocioXensor – and other – results for feeding our truly pro-active user
support systems. Rightful understanding the end-user with his - partly hidden, likely
not formulated explicitly, let alone in a machine/system readable format - intentions
and goals input is likely to be a crucial factor. SocioXensor’s combination of
quantitative data tracked by the system (e.g., location, proximity, communication)
with qualitative data provided by the users (e.g., availability, feeling, experience
sampling) is expected to contribute to the acquisition of a deeper and more holistic
insight of people’s context, answering questions like: when designing context aware

systems we make inferences on users’ needs, based on contextual data implicitly
sensed by the system: on which criteria should we draw a meaning out of these data?
And how should the system adapt to that? Given that quantitative data are more exact,
to which extent are they suitable for the understanding of the emotional aspects of
experiences? Given the subjectivity of experience, what are the parameters to be
assessed for different users?

Acknowledgments. This work is partly done under the Freeband projects WASP
(http://wasp.freeband.nl), AWARENESS (http://awareness.freeband.nl) and FRUX
(http://frux.freeband.nl), sponsored by the Dutch government and the FP6 projects
MobiLife (IST-511607), Amigo (IST-004182), and SPICE (IST-027617), sponsored
by the EU.

References

1 Dey, A.K.D., Abowd, G.D.: Towards a better understanding of context and context awareness”.
Workshop on The What, Who, Where, When, and How of Context Awareness, affiliated with the
2000 ACM Conference on Human Factors in Computer Systems (CHI 2000), The Hague,
Netherlands (April 2000)

2 Eertink, H., van Kranenburg, H., Hesselman, C.: Context-aware content distribution and adaptation,
Proceedings WPMC '03, Masao Nakagawa (eds) ISSN 1347-6890 (2003)

3 van Kranenburg, H., Salden, A., Eertink, H., van Eijk, R., de Heer, J.: Ubiquitous attentiveness:
enabling context-aware mobile applications and services, In: Lecture Notes in Computer Science,
LNCS 2875, Ambient Intelligence, ISSN 0302-9743, Springer-Verlag, Berlin Heidelberg New York
(2003) 76-87

4 van Kranenburg, H., Snoeck, N., Mulder, I.: Context aware support targeting plausible and usable
results - from reactive, via pro-active to pragmatic systems, WWRF#16, Shanghai (2006)

5 Biemans, M.C.M., van Kranenburg, H., Lankhorst, M.M.: User evaluations to guide the design of an
extended personal service environment for mobile services, Fifth International Symposium on
Wearable Computers 2001, Zurich, Switzerland (2001)

6 http://www.ist-spice.org
7 van Kranenburg, H., Eertink, H.: Processing heterogeneous context sources, Proc. SAINT 2005, Next

Generation IP-based Service Platforms for Future Mobile Systems workshop (Trento, Italy), ISBN 0-
7695-2263-7 (IEEE) (2005)) 140-143

8 Koolwaaij, J.W., Strating, P.: Service Frameworks for Mobile Context-aware Applications,
eChallenges workshop Future Workplaces: Supporting Mobile User and Worker (2003).

9 http://www.uitmetabel.nl
10 http://www.ist-mobilife.org/
11 Koolwaaij, J.W., et al: ContextWatcher ─ Sharing context information in everyday life, Int.

Conference on Web Technologies Applications and Services, Calgary (2006)
12 http://www.lab.telin.nl/~koolwaaij/showcase/crf/cw.html
13 Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J-C.;Advisory Group to the

European Community's Information Society Technology Programme (ISTAG): Scenarios for
Ambient Intelligence in 2010 (2001)

14 http://www.amigo-project.org/
15 Ramparany, F., Euzenat, J., Broens, T., Pierson, J., Bottaro, A., Poortinga, R.: Context Management

and Semantic Modelling for Ambient Intelligence, 1st International EASST-EU Workshop on Future
Research Challenges for Software and Services, associated to ETAPS'06, Vienna (2006)

16 Erickson, T.; Kellogg, W.A.: Social translucence: an approach to designing systems that support
social processes. Trans. on Computer-Human Interaction (TOCHI) 7 (2000) 59-83

17 Schilit, B.N.; Hilbert, D.M.; Trevor, J.: Context-aware communication, In IEEE Wireless
Communications, 9(5) (2002) 46-54

18 Mulder, I., Steen, M., Mulder, I., Steen, M., ter Hofte, G.H., Kort, J.: Mixed emotions, mixed methods
-- An investigation of how to study experience of we-centric context-aware adaptive mobile services
[FRUX Deliverable 1.5] Enschede, Netherlands (2004)

19 Mulder, I., ter Hofte, G.H., Kort, J.: SocioXensor: Measuring user behavior and user eXperience in
conteXt with mobile devices. In Noldus, L.P.J.J. et al. (eds.). Proceedings of Measuring Behavior
2005, Wageningen, Netherlands (2005) 355-358

