

Context Watcher ─ Sharing context information in everyday life

Johan Koolwaaij1, Anthony Tarlano2, Marko Luther2,

Petteri Nurmi3, Bernd Mrohs4, Agathe Battestini5 and Raju Vaidya4

1
 Telematica Instituut, PO Box 589, 7500 AN Enschede, The Netherlands,

koolwaaij@telin.nl
2 DoCoMo Euro-Labs, Landsberger Strasse 312, 80687 Munich, Germany,

{tarlano,luther}@docomolab-euro.com
3 Helsinki Inst. for Information Technology HIIT, PO Box 68, FI-00014 Helsinki, Finland,

petteri.nurmi@cs.helsinki.fi
4 Fraunhofer Fokus, Kaiserin-Augusta-Alee 31, 10589 Berlin, Germany,

{bernd.mrohs,raju.vaidya}@fokus.fraunhofer.de
5 Nokia Research Center, PO Box 407. FI-00045 Helsinki, Finland,

agathe.battestini@nokia.com

ABSTRACT
We present the Context Watcher, a mobile application
that enables mobile phone users to easily and
unobtrusively share personal context data such as their
location, heart rate, speed, or view, with their mutual
consent. Not only can the data be shared, it can also be
used as input for information services, to adapt
applications to the context, or to automatically derive
daily patterns and situational information, such as
‘meeting with a supervisor’, ‘is a regular visitor’ or
‘having the best condition of all your friends’. The
application is built atop of the MobiLife context
management framework, a generic approach enabling
context discovery, exchange and reasoning. In the context
management framework, different entities, context
providers, are exposed to and interact via the internet. The
context management framework and its principles will be
discussed in detail, as well as the different context
providers that play a role in the Context Watcher
application. The Context Watcher has a large user base of
100+ users, some of which are 24x7 power-users taking
the Context Watcher wherever they go, enabling the
research on daily patterns and situations to work with
real-life data, resulting in powerful algorithms and better
understanding of context and context-awareness.

KEY WORDS
Context-aware computing, context reasoning, context
tagging, mobile applications

1 Introduction

When a mobile user will be late for a scheduled event,
such as a dinner party at a friend’s house, the easiest way
to resolve this unanticipated situation is to call their host,
apologize for the delay, and provide additional
information concerning their estimated arrival time. A

drawback of this resolution is that this requires
synchronous interaction between all parties, which causes
the cooking party to leave the stove for a critical minute
or to juggle the phone in one hand and the spoon in the
other hand.

It would be much easier if the host could check
asynchronously where his guests were located, and get an
alert in case they would not make it in time for the
scheduled dinner time? With today’s current state of
technology, scenarios such as this are not at all futuristic,
but are possible to be implemented in your everyday life.
Leveraging on these possibilities is exactly the goal of the
IST project MobiLife [33], which brings recent advances
in mobile applications towards users and group of users
for making their everyday life easier. The main target user
group of the MobiLife project is the family, especially
families with members living in different locations, e.g.,
with children going to college. One of the project’s main
technology aims is to design a general framework that can
support the provisioning of applications and services that
are capable of adapting their behavior and functionality to
information that characterizes the situation of the user. In
short, we refer to these types of applications as context-
aware applications. MobiLife will develop and
demonstrate context-aware applications that are easy to
use, targeted to be used within the family group, and that
satisfy real needs of the family members.

The rest of this paper is structured as follows. Section
2 presents the MobiLife context management framework
together with a short overview and specification of the
interfaces and messages of the key components required
for delivering context-aware functionality. Section 3
presents the Context Watcher application as an example
of a context-aware application that is built atop the
context management framework enabling family
members to stay better informed about each other and
their friends, without the need for synchronous interaction
by using automatically derived context information.
Section 4 presents highlights of context providers that are

used by the Context Watcher application, and focuses on
exchange and reasoning of context information. Then,
section 5 zooms in on related work and compares the
Context Watcher with other (research initiatives). And
finally, Section 6 concludes the paper with some of our
experiences and findings and an outlook to the future.

2 Context management framework

The MobiLife context management framework (CMF) [1]
is MobiLife’s approach to discovery, exchange, and
reasoning with context information. Its goal is to enable
context information to easily flow from one provider to
multiple consumers, and from multiple providers to a
single consumer, in order to build smart constellations of
context providers that finally can produce high-level
situational information. This high level information is
then built upon tiny bits of context information from
heterogeneous sources, where heterogeneity has different
dimensions, from syntax and semantics to transport,
security, protocols and quality of context. The main tasks
for the MobiLife CMF are:
• Enabling the discovery of context providers,
• Standardizing context exchange between providers

and consumers,
• Supporting easy context reasoning by allowing

reasoning components, e.g., a recommender, to be
added to an application in a plug and play manner,

• Supporting the construction of different constellations
of context providers to provide high-level situational
information, e.g., the pipe-and-filter approach.

Context
Provider

Context
Provider

Context
Source

Context
Source

wraps

Context
Representation

Context
Representation

standardizes

Context
Broker

Context
Broker

is published in

Context
Consumer

Context
Consumer

searches in, introspectsContext
Ontology

Context
Ontology

links to

Context
Interpretation

Context
Interpretation

implements

may use

providesquery

uses other

Context
Provider

Context
Provider

Context
Source

Context
Source

wraps

Context
Representation

Context
Representation

standardizes

Context
Broker

Context
Broker

is published in

Context
Consumer

Context
Consumer

searches in, introspectsContext
Ontology

Context
Ontology

links to

Context
Interpretation

Context
Interpretation

implements

may use

providesquery

uses other

Fig. 1. The components of the CMF

The realization of these tasks, however, is not trivial or
necessarily straight-forward, especially if the solutions to
be provided must be generic enough to work across
different domains and application areas. We define the
MobiLife CMF as a set of components, which are
connected dynamically at run time, that together provide
the relevant context information using sensing and
interpretation mechanisms. The pipe-and-filter approach
enables context providers to re-use existing context
information, where context information is exchanged and
enriched when it flows through the
hierarchy, until we are able to
provide more qualitative situational
information about the subject, be it
users, vehicles, or rooms. In the
CMF, context providers (CP) can
encapsulate context-information
sources, and many different context
providers can co-exist. A
component might often be both a
context provider and a context
consumer (CC) at the same time
And, hence, a generic consumer/
producer model, where every
component can both publish and
consume context, is needed. Fig. 1

illustrates the components of the CMF and highlights our
view that the context provider is the central actor in the
system. To find context providers, the consumers use a
context broker and the internal working of a context
provider might range from simply wrapping a body sensor
for a single user to a full fledged inference reasoner that
combines information gathered from other context
providers for multiple users. What binds them together is
that they all implement a minimal set of common
interfaces, described in XML-based definitions, which
make use of a context ontology describing the logical
relations between the different context concepts in OWL-
DL. A minimal set of interfaces describes the
representation for context. The main task is to provide a
published agreement or interface contract between context
providers and context consumers. The contract is the only
information a context consumer has prior to the binding
with the context provider in order to utilize the context
service functions. The most important messages in the
representation include the context provider advertisement,
the context query, the context element and the context
subscription. With these messages, a context provider can
implement an interface with a minimal set of operations
to request an advertisement, to retrieve or push context
information, or to subscribe to context changes. All
services may support SOAP as well as HTTP GET and
POST bindings, and are described in WSDL to ease the
integration efforts.

To provide more insight about the functionality of the
CMF, we shortly describe the most important messages
that are needed for interacting with a context provider.
More details on the design issues are provided in [1].
Context provider advertisement: Each CP should be
described by an advertisement that uniquely describes the
functionalities of the provider, the types of context
information it can provide and the relevant entities
playing a role in this information. Examples of entities are
agents (person or groups), locations (building, floor, or
room) and objects (vehicle, car, or plane). With the
advertisement, we can describe providers that can deliver
the temperature of a collection of rooms, or the location
of a specific group of users, together with a URI pointing

to the service that can deliver this
information. One CP may deliver
different types of context
parameters, which can be nested to
create structures of context
parameters, and which can be linked
to the central context ontology to
gain common understanding and
enable ontology reasoning.
Context query: A context query
describes what type of context
information is requested from which
CP, relating the information to
specific entities. If not stated
otherwise, the query refers to the
last known context state, e.g.,

someone’s actual location. However, a consumer may
also specify a filter, to select specific historic information
from a CP with some kind of caching. These filters can be
posed on all attributes of the context parameters. A
summary can be added to the query to perform operations
on the result set of the filtering. The result of this
operation is then provided as a context element to the
context consumer.
Context element: A context element is an elementary
piece of context information. Each context element has
metadata describing the context provider that delivered
the data, a name, the entity that is the subject of this
context element, and a timestamp denoting on what point
in time this context information was captured. The value
of the context element is again a parameter tree, as in the
advertisement, this time containing the values of the
parameters. A value can be accompanied by a measure for
accuracy or other quality-of-context data.
Context subscription: A context subscription is used by
consumers to subscribe to a provider for notifications
about context changes or for updates of context
information at regular time intervals. The conditions
and/or the length of the time interval can be specified by
the consumer, as well as the location of its pushContext
interface it uses to receive the context elements, when the
conditions of the subscription are met. The context
subscription contains a filter and a summary that specify
what context data will be sent, and a condition that
specifies when the context data will be sent to the
specified interface. This means that the CP should
dynamically bind with the CC's pushContext interface
when the given conditions are evaluated positively.
Filter, conditions and summary: The conditions specify
a certain situation in terms of a set of logical rules, based
on the attributes and values of the context parameters. A
simple condition works on a specific parameter (e.g.,
speed) and a specific attribute of this parameter (e.g., the
value or the timestamp). This attribute can be logically
compared with a value, which results in a binary (true or
false) decision. Complex conditions are of course
compounds of simple conditions. A summary can be
added to the query or to the context subscription. The
effect is that a summary operator will be performed over
the result set of the filtering, e.g., to compute the average
of a context parameter in a certain time period.
The next section describes an application that uses these
interfaces and messages to obtain or provide the latest
contextual information about the members in a social
network.

3 The Context Watcher application

The Context Watcher is a mobile application developed in
Python, and executes on Nokia Series 60 mobile phones.
The aim of the Context Watcher is
1. to enable end-users to automatically record, store,

share and use context information in a way that makes
their life easier, e.g., because weather services can

work automatically when location context is already
known, because they can unobtrusively check the
whereabouts and well-being of their friends, or
because context tags enable them to find photos of a
specific situation with ease

2. to gather real-life context data from a large user group.
The data can be used to develop and test reasoning
algorithms and to train reasoning engines that produce
situational information from raw context data. The
derived situational information and the effectiveness of
the algorithms can then be tested in a real setting with
the Context Watcher

3. to create awareness in a large audience about the
possibilities of context-aware computing in the
everyday life of now, e.g., by demonstrating the ease
and usefulness of life blogging and picture tagging
using automatically recorded context information

The available information depends on the context
providers that are connected to the Context Watcher
application, and is certainly not limited to location only.
Not all users have exactly the same set of context
providers, depending on availability of sensors, situation,
or user requirements. The Context Watcher application
has been implemented using a modular architecture that
allows dynamic configuration of the used components..
The Context Watcher application is able to record
information about the user’s
• Location (based on GSM cell and optionally on GPS)
• Mood and other subjective pieces of context

information based on user input, e.g., availability or
perception of safety

• Activities, meetings, and daily patterns (based on
clustering and information fusion)

• Body data (based on heart and foot sensors)
• Weather (based on a location-inferred remote weather

context provider)
• Visual data (pictures tagged with contextual data)

When the user starts the Context Watcher it, depending on
its configuration, automatically connects to the available
local sensors, e.g., via BlueTooth, and to the remote
context providers over the 3G network. All connections
may also be manually activated by the user. E.g., when
the user has a GPS receiver, the Context Watcher
application will send the GPS data together with GSM
cell information to the remote location provider, which
will enrich the data (described in Section 4.1). Enriched
information is returned to the user, and they receive an
alert when they enter a known cluster (such as their
Home, Office, or Hotel) or when they are close to one of
the persons in their buddy list.

Social networks: Users can invite other users to become
their buddies. Initially, new buddies will be shown in their
contact list as ‘requested’ with no extra information. As
soon as a buddy approves the request from their contact
list, a relation is established and context information can
flow over that relation.

Fig. 2. Contact list with near real-time sharing of

contextual data and interaction possibilities, including
sharing of context-enriched pictures between buddies or

to the general public.

Fig. 2 shows an example of a contact list with near real-
time context information, that is, actual information when
both parties have the Context Watcher application
running, or the last known information together with a
time stamp when the other party is off-line. The
information shown is best-effort. This means that –in the
example- Fabiola has no GPS attached or is inside a
building, her cell information cannot be resolved, so the
best location determination is at country level. The other
two contacts have a GPS running or are in a cell of which
the location can be resolved from the cell-id database [4].
The location, in terms of latitude-longitude, is resolved
into street and city information using the MapPoint web
service [7], and this information is shown in the contact
list, together with readings from other context providers,
including heart rate and walking speed information from
the wellness provider (see Section 4.4), resulting in the 88
beats per minute heart rate of Fabiola. Our next steps
include transformation of these context bits into
situational descriptions like: “Fabiola is being relaxed at
home” or “frantically typing in her office”.

Context tagging: All gathered context information can be
used 1) to adapt the behavior of application running on
the mobile phone (e.g., prioritizing the favorite
applications depending on location cluster), 2) to serve as
input for information services (maps, points of interest) or
other context providers (described in Section 4), and 3) to
tag multimedia content recorded with the mobile device.
When pictures are submitted to the photo context provider
from the Context Watcher application, a large part of the
descriptive text can be written automatically using present
context information. Fig. 2 & 3 show how a picture can
be submitted, and how this picture is tagged with
automatically recorded street and city information, the
geo position, the speed and direction of movement, the
name of the location cluster (is this a home or an office
picture), and the people who are nearby.

We have integrated the photo context provider with
Flickr [31], one of the largest public image servers of this
moment, where the context information is submitted as
tags, and the descriptive text is automatically generated,
e.g., “I was on [business trip] together with [Henk] and
[Bernd] in [Oulu] and I made this picture of the
[Alexanderkatu] while traveling [with public transport] to
the [summer school]”, where all the information between
brackets is auto-generated. This means that one action on

the mobile phone is enough to send a richly described
picture to a remote image server, enabling others to easily
find pictures of their liking, e.g., by browsing the context
tags to separate the home pictures from the office
pictures. Programmatic interaction is also a possibility:
because all pictures are geo-tagged, they also show up in
experiments where other parties integrate Flickr and
Google Earth, including [6] and [15]. The collection of all
public context-enriched pictures from different users can
be found at [16]. The user can choose the image quality,
and when bandwidth will increase and costs will decrease
(in The Netherlands, one operator offers flat fee GPRS for
10 Euro per month), users will be bound to submit higher
quality images over time.

Life blogging: One of the next steps is to generate daily
reports from the different streams of context information
and the pictures taken during the day, and to present them
in a format which is enjoyable and informative to a
human reader, with cross links between the summaries for
easy navigation and categorization. This way it is possible
to easily browse your own life, e.g., by finding those other
days that you met buddy Marko, and recollecting what
you did together. An example is provided in [32].

Owner
(rights)
Date

Picture Context Data

Johan
(private)
9/14/2005
1:35:45 PM

cell id: 10571
altitude: 59.4
speed: 115.1 km/h
course: 246.6
pos: (52.279,6.503)
range: 1 m
street: E30
postal code: 7462
city: Rijssen (NL)

Johan
(public)
12/1/2005
6:15:25 PM

cell id: 17404
pos: (45.189,7.644)
range: 1 m
street: SP2
postal code: 10072
city: Caselle Torinese (IT)
buddy: wagner
flickr: link

Fig. 3. Sample overview of the submitted pictures, together with
relevant context data of that moment. The first example shows
GPS based location data, the second one show cell-id based
location data together with automatically derived cluster names
and nearby buddies (if any).

4 Context providers

The Context Watcher application itself is in fact a very
thin application that interacts with a wide spectrum of
local and remote context providers and information
services. In this section, we give information about the
functionality of underlying context providers, and show
that despite the differences, in for example complexity or
in intelligence, these context providers together can
deliver a new and innovative mobile application that

http://www.flickr.com/photos/33055478@N00/69062882

enables the end-user to share, store, and re-use his
personal information with more ease, and to enjoy the use
of an application that takes work out of his hands and
better adapts to his needs and wishes. All context
providers offer both a web interface for visual inspection
and maintenance, and a web service interface for
programmatic interaction, standardized to the representa-
tion discussed in Section 2. Each context provider
implements the CRF interfaces, which is done by easily
generating the server class (named contextProvider) from
the WSDL. The actual implementation of the context
provider inherits from this abstract contextProvider class
and overrides all methods in this class, e.g.,
getAdvertisement and getContext. The interaction
between the Context Watcher and the context providers is
shown in Fig. 4.

Fig. 4. Interaction of the Context Watcher with sensors,

context providers and 3rd party services.

4.1 Location provider

The main tasks of the location provider are threefold. First
of all, the location provider enriches and refines coarse
location information. For example, the location provider
attempts to deduce the current city and street from GSM
cell and GPS latitude-longitude information. For
resolving cell ID into location it uses a large cell database
[4]. Secondly, the location provider acts as a repository
for location information and, thirdly, exchanges the
information with authorized parties. For now, only the
individual user and his/her buddies are authorized to
request location information. Using historic location
information, the location provider can also find frequently
visited places for a specific user (see also Section 4.2),
and provide information about trajectories between those
frequently visited places, e.g., the daily pattern from home
to office. It can detect spontaneous meetings with known
buddies and this information can serve to alert the user in
the Context Watcher application (e.g., about nearby
buddies), or to exchange with buddies (e.g., about current
activity).

Fig. 5. Enriched location data on the mobile phone, also used as

input for e.g., point of interest and map services.

Fig. 5 shows how location information from the location
CP is displayed and used in the Context Watcher
application. In the example above, GPS data is used as
input, but the system works exactly the same based on
cell-id information, only the accuracy goes down
substantially, which results among others in less detailed
maps, and less detailed location information to be sent to
the buddies.

4.2 Location clustering

The GSM cell information and the GPS coordinates are
typically not meaningful to a user nor do they normally
carry any semantic meaning for the user. Instead of giving
information about the location in exact form, it is often
more useful to identify abstract locations such as ‘Home’
or ‘Work’. In order to do the step from non-meaningful
data to personally important locations, we employ a
clustering algorithm that uses information from GSM cell
transitions and the GPS latitude-longitude coordinates at
the transition points to identify clusters of cell identifiers
that are likely to belong to the same abstract location.

Fig. 6. This example shows the automatically derived clusters
and meetings. Each event has its own begin (B) and end (E)

time, and is also published in the agenda CP.

Whenever a cell transition occurs, the Context Watcher
application submits all location information to the
location provider, which then processes the data. The
clustering is not performed each time data is sent to the
server, but instead we run the algorithm periodically,
typically overnight. Alternatively, the user can manually
trigger the clustering. Whenever the current GSM cell is
identified to belong to a cluster, information about the
cluster is submitted back to the phone.
Details of the applied clustering algorithms are described
in [14] and [17]. Here, it suffices to say that the currently
applied algorithm builds a first-order Markov matrix of

the different states of the user, based on cell-id and geo-
location, detects the short-range loops in that matrix, and
assigns all states in the loop to a cluster. Clusters are
numbered by the system, and can be named by the user.
Fig. 6 shows the cluster naming in the Context Watcher.
If the cluster has a name, the activity tab of Context
Watcher shows that as the current activity. On the other
hand, if the cluster has no name yet, the user is informed
that (s)he is in an unknown cluster, which can then be
named. Cluster management can also be done via a
personal web site that provides on overview of all clusters
of a user. The clusters are also used by other context
provider, e.g., they are used in the personal blogs, and the
agenda provider uses them to automatically name
activities.

4.3 Agenda provider

The agenda context provider attempts to simplify
calendaring and scheduling by exposing temporal context
information, from the time domain, using standard
internet technologies such as the Internet Calendaring and
Scheduling Core Object Specification (RFC 2445),
HTTP, and WSDL. Context information can be used both
programmatically, as a web service, by context consumers
or the Context Watcher application, as well as manually
by individual users using any application that supports the
iCalendar specification, such as the Mozilla Calendar [13]
application.

Fig. 7. Dataview of the Agenda Provider in Mozilla calendar:
automatically obtained in a regular workweek with the Context

Watcher running.

Although the tasks of calendaring and scheduling are
often viewed as synonymous, this is incorrect. Both
calendaring and scheduling represent unique temporal
data management concepts. Calendaring involves the
creation and manipulation instances of temporal data on a
calendar, such as an Event or a Todo, while scheduling
involves the communication and negotiation between
calendars containing temporal data instances for the
manipulation of new or existing related temporal data
instances to achieve a goal. To handle both calendaring
and scheduling the agenda package exposes all data
objects, whether they be Events or Todos, as a web
service. Through the use of standard web service

technology, such as HTTP or SOAP, individual and group
calendaring and scheduling task can be achieved by
context consumers. One example – illustrated in Fig. 7 –
of both calendaring and scheduling is the calendaring of
the most frequently visited locations, originating from the
Location Context Provider, which can be used by a
reasoning context consumer to generate resulting
scheduling data.

4.4 Wellness provider

A personal condition context provider typically stores
information about the mental and physical state of a user.
This information may come from different body sensors
that collect information about body movements, heart
activity, brain activity, eye movements, et cetera. The
wellness provider is an example of a personal condition
context provider that collects data gathered from a Suunto
T6 watch equipped with an additional footpod (which
measures walking speed and distance) and a heart rate
belt (which measures heart rate). These three devices
communicate using a proprietary low-energy protocol
called ANT [5]. To connect these devices to a phone, a
Bluetooth-to-ANT module is used. This module receives
ANT messages from the sensors and exposes the
information for other parties via a Bluetooth interface that
implements the SSI protocol [9]. The Context Watcher
application collects the information from the Bluetooth
interface and updates the remote wellness provider with
the information using a GPRS connection. The wellness
provider provides different kinds of information, e.g.,
performance charts (heart rate against speed) and statistics
over past heart rate information:

Heart rate for Average Deviation Minimum Maximum

johan 75.3 15.5 46 153

anthony 76.8 11.7 66 98

agathe 85.5 12 75 109

This information can be shared with the buddies running
the Context Watcher application, as depicted in Fig. 2.
This wellness data is mostly used to compare physical
condition and performance with the buddies, or to
generate personal training advice.

4.5 Transport provider

Many public transportation companies offer web-based
interfaces to access transportation routes and timetable
information and to provide users with advanced search
features, such as maps, to plan their trip. The transport
provider application demonstrates the use of a symbolic
cluster map (SCM) based context recognition module [2]
and provides a personalized access to public
transportation information from a mobile device. The
initial version provides access to the public transportation

system of two different locations, the city of Helsinki in
Finland [11] and the region of Niedersachsen and Bremen
in Germany [12].

The SCM module clusters tuples of strings
representing the input context data. The context data used
in our demonstration is GSM Cell Id and time. Strings are
dynamically associated with the GSM cell information
based on (cell-id, lac, mnc, mcc). Both the location and
time data are discretized, and this discretized form will be
given as input to the SCM, e.g., as (a, c, b, p). The SCM
module picks the winning node of the grid for the given
input, and updates the internal representation of the values
associated with this node. We call recognized context the
winning node for a given input data. The size of the grid
depends partially the context recognition granularity. Our
working implementation uses a grid of ten nodes, named
1-10. Moreover the configuration of the grid is stored into
a file and retrieved from it when the application restarts.

The transport provider application keeps an SCM
module that senses and clusters data periodically, i.e.,
every 30 seconds, and uses the recognized context to
index the search queries entered by the user. For example,
if his current context is 3, the user has access to the list of
queries he has previously entered when in context 3. At
best, the user reuses a stored query that is automatically
updated with the current date and time. At worse, the user
enters other parameters. If new, the query will be added to
the list of queries for the current context. The queries are
transformed into URLs that are sent to the chosen
transportation internet servers. The HTML page retrieved
is simply displayed by the default browser application.
This way, it is very easy for the user to obtain relevant
personal traveling information based on context: e.g., at
home the recommended query is for the next bus to the
office, and in the office the recommended query is for the
next bus home, all with one click action of the user. Of
course, this is a simple case, but also more complex and
unpredictable cases have shown useful results.

4.6 Weather provider

The weather provider is an example of how public
information service can be wrapped into the MobiLife
CMF structure. It delivers environmental information for
the given location, identified by a tuple that specifies a
city and a country (Fig. 8). If only GPS latitude-longitude
information or a cell-id is available, a corresponding
translation (such as the one implemented by the location
provider described in Sect. 4.1) has to be applied before
the invocation.

The contextual data provided comprises a description
of the current situation as well as a forecast for the next
few days, covering all major regions such as Africa,
America, Asia, and Europe. Besides actual weather
information such as temperature (measured and
RealFeel), wind (speed and direction), precipitation (snow
and rain), UV index, humidity, pressure, visibility and a
textual description of the current conditions, one can also

retrieve prognosis of those elements (e.g., the expected
maximum temperature for tomorrow).

Fig. 8. The results of the weather provider in the Context

Watcher application

Forecast information is available for today as well as for
the next few days. While actual weather data can be
retrieved using the simplified getLastContext interface,
weather forecasts have to be accessed by using the
general getContext function with an appropriate filter
element. Of course, the accuracy values for context
elements describing predictions are low for long-range
forecasts. In additional to pure weather information, basic
localized information about the moon and the sun (i.e.,
moonset, moonrise, moon phase, sunset and sunrise) are
available too. This data can be used, for example, to
estimate the actual outdoor light conditions at a given
location. All qualitative values (such as the weather
condition, the moon status and the wind direction) are
complemented by references to corresponding ontology
elements to enable ontology-based situational reasoning
[10]. Future work includes the implementation of the
CMF publish and subscribe interface to warn consumers
about major weather changes like falling temperature or
rain in the afternoon.

4.7 Presence provider

The presence provider enables users to share their current
presence status with others. Users can publish their
availability for being contacted and
their current mood for all their
buddies. Using the Context Watcher
application, users can manually set
their current availability and change
their mood and send this information
to the presence context provider that
offers this information to interested
context consumers. Users can select ‘Online’, ‘Busy’ or
‘Away’ as availability and ‘Happy’ or ‘Sad’ as mood. If
desired, users can also add custom moods or availabilities.
The presence information could also be changed
automatically by a reasoning system that infers user’s
presence status based on other context information like
location, time and people in proximity. This way, it could
automatically be inferred that users are not available for
being directly contacted at the moment, because they are
currently in a business meeting. The availability will be
seen by the buddies when they try to call, which can make

them to decide to call later. Knowing about the presence
status of users is one of the key factors in realizing
situation based applications. Acting as context consumer,
an intelligent service provisioning application can offer
services to the user based on the current presence status.
Services may also be automatically triggered when the
presence status changes. For example, a phone call can be
automatically redirected to the secretary when user’s
availability is set to ‘busy’.

4.8 Preference provider

The preference context provider
offers personal and group-related
profile and personalization data. This
includes users’ personal information
or users’ global preferences shared by
all services or service specific
preferences. Preferences can be
activated related to certain user
situations. Based on a high-level

situation description the most appropriate set of
personalization data will be selected. For example, the
situation "being at home" may lead to a different
suggestion which music should be played compared to the
situation "driving in my car". The preference context
provider can be used by any application for storing,
reading and managing situation-based group and user
preference data. The management of such information can
be done via web. A simple GUI allows users to create or
update their preferences. Users can specify their personal
records and specify their preferences for different services
and profiles. Users can also activate certain profile or
specify when to activate or deactivate certain profiles.
The Context Watcher application takes advantage of the
preference context provider and enables users to
personalize certain features. One simple example is to
select the preferred measurement unit for the weather
provider, which can be set to Fahrenheit or Celsius. The
Context Watcher application displays the temperature
value of the weather information based on user’s setting.

4.9 Context Visualization with Google Earth

As the use of the Context Watcher application grows, so
does the context information. Visualization of such
information important to have an overview of the
information collected. The location provider collects
location information of Context Watcher users. The
Google Earth application provides a powerful interface to
visualize the location of a user’s buddies in the world map
using the location information from the location provider.
Moreover, it is also possible to show any other context
information associated with the user, coming from
different context providers. Of course, you will see only
those pieces of information the users allows you to see.

The Google Earth application uses the KML data file in
XML format for showing geographic features like points,
lines, and images in the Google Earth Client. This file
format provides ability to specify images and labels to
identify locations in the world map as well as to
dynamically get such location information from the
remote or local network locations at certain intervals.
Taking advantage of such features, a simple KML file has
been created which at regular time intervals accesses the
CMF to get the location of all buddies, resulting in a
visually appealing way to see all your buddies moving
over the globe as depicted in Fig. 9.

Fig. 9. Near real-time buddy locations integrated in Google

Earth

Additional buddy information includes the postal address
and the user’s current presence information retrieved from
the presence context provider, and an image of each user.
This way it is possible to show the location and additional
context information of users in near real-time.

5 Related work

This section shortly describes related work in context
aware applications and architectures.

Architectures and Frameworks: A substantial number
of previous research efforts have proposed architectures
and middleware for context-aware applications. In this
section, we shortly review and discuss these efforts in
relation to the MobiLife CMF. According to the overview
Moran and Dourish [21], most approaches are
implemented in the form of middleware and its services,
or in the form of application frameworks.
Examples of the middleware approaches include, e.g., the
Reconfigurable Context-Sensitive Middleware (RCSM)
[22], and the CORTEX middleware [23]. For our
purposes the CORTEX approach is more interesting as it
introduces special entities, called sentient objects, which
are responsible for receiving, processing, and providing

context-related information. Sentient objects are defined
as autonomous objects that are able to sense their
environment and act accordingly [23]. The advantage of
this approach is the possibility to re-organize them, for
instance depending on their primary task.

Another closely related middleware approach is Gaia,
which also uses the concept of providers and consumers
as the basis for data exchange. Another similarity with the
Gaia is that it is flexible in terms of the supported
reasoning functionalities [30]. Also some application
frameworks that support context-awareness have been
proposed. For example, [20,24] describes the
implementation of a framework that supports
management of context information on mobile terminals.
The structure of this framework is centered on the
blackboard paradigm for communication, which is
handled by a context manager. Most components that use
this framework, including the applications, act as clients
for the context management system on the device itself.
Other services can potentially run also in a distributed
environment. Another framework approach is the Context
Toolkit [18,25], which separates acquisition and
presentation of context information from the application
that requires it, by using so-called widgets. The focus of
this work lays in the automatic inference of higher-level
context information from lower-level sensor data.

Tools for data gathering and sharing: Various tools for
gathering and sharing contextual data have been proposed
in the literature. Many of these are using Bluetooth for
collecting the data, but also more generic tools that
attempt to get information about the network and/or
device capabilities have been developed. Closest to our
work is the ContextPhone [3]. The ContextPhone has
been implemented for Nokia Series 60 mobile phones
using C++. The basic set of information that is available
via the ContextPhone is similar to our setting, and the
ContextPhone also supports sharing information and
uploading context tagged photos to Flickr, but with a
limited context data set. The main difference is that
ContextPhone is a platform that runs on the phone almost
entirely with communication pipes to the outside world,
whereas the Context Watcher is only a thin application
that interacts with a network of remote Context Providers
in the CMF, enabling more powerful reasoning, longer
data storage, and easy integration with 3rd party services
such as the context blogs.

Another closely related approach is to integrate
several sensors directly to a terminal device. For example,
Muffin [26] integrates, e.g., an air temperature sensor, a
humidity sensor, an alcohol gas sensor, a pulse sensor, a
compass and a linear 3D accelerometer, to a terminal
device. The Bodymedia SenseWear PRO2 Armband [27],
on the other hand, allows obtaining information, e.g.,
about energy expenditure, sleep/wake states and duration
of physical activity. A related approach is the Intel Mote
[28] technology, which allows several external
physiological sensors to be attached to a small chip that
has Bluetooth capabilities. In terms of data gathering, the

work that is closest to our work is the IBM Mobile Health
Toolkit [29], which contains a MIDP application that runs
on a mobile phone and which uses a specific set of health
sensors (part of the kit) to gather remote medical data.

Life blogging was studied in [21]. In the study,
ContextPhone was used to gather data about
communication behavior of users and the strength,
dynamics and evolution of social networks were studied.
In addition, the authors used the concept of entropy to
estimate the predictability of daily routines and
formulated the use of so-called eigenbehaviors from the
data.

6 Experiences & conclusions

We have shown that a mobile phone can truly serve as an
application platform for sharing context information in
everyday life. Experience using our application has shown
that context-awareness does not force people to adapt or
change significantly their daily patterns in their normal
environments, but accompanies them throughout
everyday life. As such, the Context Watcher application
has proven to be a perfect platform for large scale and
cheap user experiments with mobile, context-aware
applications in a world where reality can be the laboratory
for user tests.

The Context Watcher application as a prototype was
built on top of the MobiLife CMF. It integrates with a
substantial number of remote and local context providers,
and has a user base of more than 100 persons. In about
one year time, these users have formed many
relationships, and by observing their movements through
out everyday life, the system has found about 600
frequently visited places and detected numerous meetings
between buddies in a total of 200.000 location
measurements. In the several thousands of submitted
pictures, we even proposed conventions for context
tagging that were adopted as de-facto by a much larger
user community.

The functionalities most valued by the users were 1)
the possibility to know where the others are and to keep in
touch without having to approach them directly, 2) easy
access to services because the input parameters are
automatically provided context parameters (e.g., local
weather with one click, rich picture submission with one
click, easy public transport info, et cetera), and 3) remote
logging of activities and preferences, and the sharing of
this information across different (mobile) applications and
web sites, including Flickr.com and their personal blogs.
Sharing information via these channels with non-users of
the Context Watcher (e.g., parents) was perceived as
added value. Given their experience with the Context
Watcher most users could easily imagine new
applications that involved sharing of context data in
specific niches, like body performance data when doing
sports, or road quality information when skating.

The development of the Context Watcher application
also evaluated the specification of the CMF and in

particular the specifications describing its interfaces.
Feedback from the different developers, using a variety of
languages (Java, C# and Python) and development tools
demonstrated the specification to be at a mature level.
Additionally, we have used the Context Watcher
application many times to explain the principles behind
the CMF and to improve understanding about context-
aware applications to a broad audience.

The Context Watcher application is freely available
[8], and has proven to be the right basis for easy extension
with new wishes of users and offerings of new context
providers.

Acknowledgements

The authors would like to thank the MobiLife project, and
Work Package 4 in particular, as well as Fabiola Lopez
from Suunto for her support in supplying the body sensors
and Bluetooth integration. And special thanks goes to all
Context Watcher users for providing real-life
experimental data and valuable feedback!

References

[1] P. Floreen, M. Przybilski, P. Nurmi, J.Koolwaaij, A.
Tarlano, M. Wagner, M. Luther, F. Bataille, M. Boussard,
B. Mrohs and S. Lau, Towards a Context Management
Framework for MobiLife, Proc. of the 14th IST Mobile &
Wireless Communications Summit, Dresden, Germany,
June 19-23, 2005.
[2] J. Himberg, J. A. Flanagan, and J. Mäntyjärvi,
Towards Context Awareness Using Symbol Clustering
Map, Workshop for Self-Organizing Maps 2003
(WSOM2003), pp. 249-254, Kitakyushu, Japan, 2003.
[3] M. Raento, A. Oulasvirta, R. Petit, and H. Toivonen,
ContextPhone - A prototyping platform for context-aware
mobile applications, IEEE Pervasive Computing, 4 (2):
pp. 51-59, 2005.
[4] J.W. Koolwaaij, Mapping the GSM landscape, Proc.
of the 4th SVG Open conference, Enschede, The
Netherlands, 2005.
[5] ANT, http://www.thisisant.com
[6] Map Flickr photos with Google Earth
http://www.lifehacker.com
[7] MapPoint web services, http://www.mappoint.net
[8] Context Watcher manual
http://www.lab.telin.nl/~koolwaaij/showcase/crf/cw.html
[9] Simple Sensor Interface, http://www.ssi-protocol.net
[10] Situational reasoning – a practical OWL use case, M.
Luther, B. Mrohs, M. Wagner, S. Steglich, and W.
Kellerer, Proc. of the 7th International Symposium on
Autonomous Decentralized Systems (ISADS’05),
Chengdu, China, April 2005.
[11] Public transport information system Helsinki
http://aikataulut.ytv.fi/reittiopas
[12] Public transport information system Hannover

http://www.efa.de/gvh
[13] Mozilla Calendar,
http://www.mozilla.org/projects/calendar
[14] Self-Mapping in 802.11 Location Systems, A.
LaMarca, J. Hightower, I. Smith and S. Consolvo,
Placelab white paper.
[15] Geobloggers, http://www.geobloggers.com
[16] The picture collection in Flickr made with the Con-
text Watcher, http://www.flickr.com/photos/tags/mobilife
[17] P. Nurmi and J. Koolwaaij, Identifying meaningful
locations, Submitted to Conference on Mobile and
Ubiquitous Systems: Networking and Services, 2006.
[18] A.K. Dey, G.D. Abowd, The Context Toolkit: Aiding
the Development of Context Aware applications,
http://www.cs.cmu.edu/~anind/context.html
[19] N. Eagle, Machine Perception and Learning of
Complex Social Systems, Ph.D. Thesis, Massachusetts
Institute of Technology, 2005.
[20] P. Korpipää, M. Koskinen, J. Peltola, S.-M. Mäkelä
and T. Seppänen, Bayesian approach to sensor-based
context awareness, Personal Ubiquitous Computing, 7(2):
pp. 113 – 124, 2003.
[21] T.P. Moran and P. Dourish, Introduction to special
issue on context-aware computing, Human-Computer
Interaction (HCI), 16(2-3), pp. 87 – 96, 2001.
[22] S.S. Yau, F. Karim, Y. Wang, B. Wang, S.K. Gupta,
Reconfigurable context-sensitive middleware for
pervasive computing, Pervasive Computing, 1(3), pp.33-
40, 2002.
[23] H.A. Duran-Limon, G.S. Blair, A. Friday, P. Grace,
G. Samartzidis, T. Sivaharan, and M. Wu, Context-aware
middleware for pervasive and ad hoc environments,
Technical Report, Lancaster University 2004.
[24] P. Korpipää, J. Mäntyjärvi, J. Kela, H. Keränen and
E.-J. Malm, Managing context information in mobile
devices, Pervasive Computing, 2(3), pp. 42 – 51, 2003.
[25] A. K. Dey, G. D. Abowd and D. Salber, A
conceptual framework and a toolkit for supporting the
rapid prototyping of context-aware applications, Human-
Computer Interaction, 16(2,3 & 4), pp. 97 – 166, 2001.
[26] T. Yamaba, A. Takagi and T. Nakajima, Citron: A
context information acquisition framework for personal
devices, Proc. of the 11th International Conference on
Embedded and Real-Time Computing Systems and
Applications, IEEE; 2005.
[27] Bodymedia, Bodymedia Health Monitoring System,
http://www.bodymedia.com/main.jsp
[28] Intel, Intel Motes,
http://www.intel.com/research/exploratory/motes.htm
[29] IBM, IBM Mobile Health Toolkit,
http://www.zurich.ibm.com/mobilehealth, 2006.
[30] A. Ranganathan and R.H. Campbell, A Middleware
for Context-Aware Agents in Ubiquitous Computing
Environments, Proc. of the ACM/IFIP/USENIX
International Middleware Conference, 2003.
[31] Flickr, a popular image sharing service with open
interfaces, http://www.flickr.com
[32] Example context blog: http://koolwaaij.blogspot.com
[33] MobiLife web site: http://www.ist-mobilife.org

http://www.thisisant.com/
http://www.lifehacker.com/
http://www.mappoint.net/
http://www.lab.telin.nl/%7Ekoolwaaij/showcase/crf/cw.html
http://www.ssi-protocol.net/
http://aikataulut.ytv.fi/reittiopas
http://www.efa.de/gvh
http://www.mozilla.org/projects/calendar
http://www.geobloggers.com/
http://www.flickr.com/photos/tags/mobilife
http://www.cs.cmu.edu/%7Eanind/context.html
http://www.bodymedia.com/main.jsp
http://www.intel.com/research/exploratory/motes.htm
http://www.zurich.ibm.com/mobilehealth
http://www.flickr.com/
http://koolwaaij.blogspot.com/
http://www.ist-mobilife.org/

	ABSTRACT
	KEY WORDS

