

Grounded Contextual Reasoning enabling
Innovative Mobile Services

Herma van Kranenburg 1, Alfons Salden1, Tom Broens2 and Johan Koolwaaij1
1Telematica Instituut, Enschede, Netherlands; 2University of Twente, the Netherlands

Abstract - This paper reflects our findings on the
technological feasibility of a mobile service scenario. We will
show that despite the scenario being quite ordinary for end-
users, the required service support functionality is rather
complex. The realisation hinges on intricate grounded contextual
reasoning about location information, user profiles and other
situational context information. In particular, existing
engineering methods and state-of-the-art technologies very well
enable, for example, timely warning of a sales manager, who is
late for and on his way to a business meeting. Furthermore, such
techniques readily enable recommending the ‘best’ alternative
travel schemes such that he arrives in time for his meeting. We
report on our findings with implementing a sophisticated
location reasoner of such a commuter-assistant that ultimately
aligns commuting and meeting preference schemes of the sales
manager.

1. INTRODUCTION

Applications can be enriched by being aware of the
end-user context. It enables applications to be tailored to the
needs and situation of users. Especially in the case of mobile
applications and moving end-users this adds to an increased
user appreciation and perception of added value services. For
application providers, context aware services offered by an
innovative service infrastructure are beneficial. This enables
them to develop context aware applications with a short time
to market. Such context aware services typically provide
context gathering and interpretation functionality. Examples
of context gathering services concern information on location,
transportation means, traffic jams, priority and business-
meeting schedules, while context interpretation typically
concerns inferring transportation speed, projected arrival time
and alternative travelling schemes. With services pro-actively
responding to upcoming relevant changes in the environment,
users are even better served. Such attentiveness and
anticipatory aspects are part of a ubiquitous attentive system
[1] that we aim at.

Contextual reasoning is a key element in context
aware services; it involves processing network context. Here
a network does not only concern a heterogeneous storage,
computation and communication network (including end-
devices) with middleware and application services and
platforms living on top. Social and business networks may as

Manuscript received March 23, 2005. This work is part of the
Freeband Awareness project (http://awareness.freeband.nl/). Freeband is co-
sponsored by the Dutch government under contract BSIK 0325.

well be parts of such a network. Of course, those networks are
generally intertwined, attached or coupled to make a dynamic
complex network. Thus, innovative services should be
capable of reorganising and coordinating current and future
networks at and surrounding the mobile node of an individual
or group of end-users. The latter means that on the basis of
analyses of various types of contextual information objects a
selection and decision has to be made - at run-time - about
those services to be offered or delivered to a user. For truly
optimal contextual service offerings grounded contextual
reasoning is a necessity. In the case of our scenario it means
that on the basis of business meeting schedules and personal
profiles and preference schemes a robust hierarchy of
alternative ways of commuting to work have to be presented
to the manager keeping in mind the manager’s next business
meeting and his current situation.

The basic principles of contextual reasoning are
explained in [2]. In simple words, context reasoning is about
deducing entailed contextual information from the various
sources of context information. In the case of our context
aware mobile services the problem of contextual reasoning
concerns understanding which, why, when and how specific
inference mechanisms compliant with multiple network
contexts are used by and are valuable to people. In this
respect, reasoning about heterogeneous network contexts for
pervasive environments can certainly profit from the expertise
residing in AI with regard to integration of heterogeneous
knowledge and databases [3]. However, despite the large
amount of work on context reasoning, we are very far from a
general accepted network theory for contextual reasoning. So
far, special forms of contextual reasoning have been proposed
for specific purposes, but no one has succeeded (yet) in
unifying all this work in a sensible single theory. The result
has been a fragmentation of interests, methodologies and
technical tools. In section 3, we give an overview of these and
discuss this further.

Our paper is organised as follows. In section 2, we
present and analyse our commuter-assistant scenario: our
manager has just missed his train, but his mobile agent is
perfectly aware of his whereabouts and the traffic and
business situation he is in, and suggests viable alternatives by
using contextual reasoning methods. In section 3 and 4, we
review the principles, engineering methods and state-of-the-
art technologies that can help in realising contextual
reasoning in our scenario. We report on our first experiences
and experimental results in building such a commuter-
assistant system in section 5.

2. COMMUTER-ASSISTANT SCENARIO

This section describes a scenario in which contextual
reasoning plays an important role to assist sales manager
Ferdinand in choosing the best means of transport based on
his business schedule and real-time public transport
information. It demonstrates the complexity of the network
context providers and reasoning required.

It is a cloudy morning and Ferdinand is in a hurry. Ferdinand
is a sales manager of a major financial institute. Because of
all the traffic jams, he prefers to travel by public transport.
This morning he has an appointment with two customers for a
major business deal and he does not want to come late.
Ferdinand steps out of the bus and notices that he is rather late
for his train connection. He runs to the train station, but
before even entering the station, he already gets a notice from
his mobile device that his train has left. At least that saves
him a run to the platform, and even better, the system
automatically gives him alternative travel schemes:
“Ferdinand, you can travel by taxi or by bus. Taxi is more
expensive (€15,-) and normally it would get you on time to
your appointment. However, at this moment there is a large
queue of people waiting for a taxi. So at this moment, the bus
is the best alternative. It is less expensive (€ 4,-) but will bring
you 10 minutes late to your appointment. The bus is standing
on platform 5 and leaves in 3 minutes.”
Ferdinand decides to go for the bus, and hence he is
scheduled to arrive 10 minutes late at his appointment. The
system informs the customers that Ferdinand will be 10
minutes late and that he is currently in the bus on highway
N35. Although Ferdinand will be late on his appointment the
waiting time for his customers is minimized and they have
timely feedback on his status.

To realise such a commuter-assistant scenario one has to

keep track of the actual and past user travel preferences and
service issues, such as arrival and departure times, location,
platforms, meeting times, costs, etcetera. This requires the
following context providers and services:

• Travel Preference Scheme Provider;
• Business Meeting Scheme Provider;
• Train Service Provider;
• Taxi Service Provider;
• Bus Service Provider;
• Location Provider.

It is important to note that these are broad classes of context
providers, differing - even within a class - in quality of
context, usage characteristics, costs, and availability. To make
this more concrete, consider the diversity of location
providers for the commuter in our scenario:
• GPS location provider, residing on his mobile device,

communicating with his GPS receiver, good precision, no
costs, available outdoors and limited by battery power;

• Network location provider, service residing in the
telecom operator domain, accessible via GPRS/UMTS,
available with broad coverage, limited precision, costs
are involved, requires subscription and authorisation;

• Local location provider, uses locally available
communication channels (Bluetooth, Wi-Fi, RF, GPRS)
to spot the identity of other nearby devices/cells/tags and
does a lookup in a central registry to obtain the location
of the static ones (if available), precision and costs
depends on the communication channel, availability
limited by nearby devices and coverage of the central
registry;

• P2P location provider scans via a small area network
(e.g. Bluetooth) for nearby devices that offer a location
service, works everywhere, usually free of charge,
availability depending on peers.

To present Ferdinand timely with alternative travel schemes
the commuter-assistant system needs to collect data from
several context providers and reason with the contextual
objects to do a rightful interpretation and come up with
optimal transportation recommendations. Necessary steps
include:

• Collecting time-schedules and meeting-priority;
• Collecting available travel services and their

transport timetables;
• Collecting locations (of Ferdinand, train, available

taxis);
• Collecting traffic situation (like traffic jams);
• Inferring price and expected arrival time at the

meeting’s location for the available travel service
providers (e.g. 2 taxi providers and 1 bus);

• Inferring the impact of selecting either of the
available travel provider service offerings (e.g.
projected time of too-late arrival with the current
situation, risk of another delay yet to occur);

• Inferring hierarchical ordered list with best two
alternative travel schemes.

The service of the commuter-assistant system to Ferdinand
might seem simple to an end-user. Nevertheless, the analysis
in this section makes clear that quite innovative and
complicated service support functionality on context
gathering and reasoning is required to realise it.

3. REASONING FRAMEWORK

In the following paragraphs we first present the main
principles of contextual reasoning followed by the most
relevant engineering methods for grounding and categorising
contexts robustly. Using these principles and categorisation
approaches suitable context representation and reasoning
methods are presented.

3.1 Principles

Contextual reasoning exploits relationships among local
structures engendered by different contexts. For example, the
business scheme and the travel preferences of the sales
manager determine how to weigh the different travel service
alternatives and how to present them. Herein two general
principles underlie contextual reasoning [3]:

• Principle of locality - reasoning about local
structures takes place in partial, approximate, and
perspective representations of the world;

• Principle of compatibility - constraints on the
reasoning process are in line with one or more
context-models.

Contextual reasoning for advanced mobile services boils
down to making (fuzzy) truth assignments for such a service
on the basis of contextual parameters provided and assessed
by various network entities. These network entities can for
example yield:

• Heterogeneous network contexts (e.g. “He missed
the train and thus is confronted with a specific travel
service schedule and has the following upcoming
business meetings”);

• Hierarchies of nested network contexts (e.g. “He
prefers an ordering of alternative travel services
according to his preferences.”).

Raw network data can form low-order context for a
mobile service, while interpretations and combinations of
lower-order contexts can yield higher-order contexts.
Relevant low or high-order network contexts for a mobile
service can be constructed on the basis of network models.
Such models can generate hierarchies of nested network
representations of various granularities that can serve network
context representations. In other words, such models can yield
various categorisations of network contexts that in turn can be
used for contextual reasoning purposes.

3.2 Context categorisation

In contextual reasoning about mobile service
provisioning the reasoning engine can take various network
contexts as constraints for making appropriate inferences.
Following our scenario network contexts can involve various
actual travel service schedules, but also business meeting and
preference schemes of an end-user. An inference of what
mobile service to deliver given those contexts can be
expressed in terms of a concatenation of logical operations on
the actual schedules and schemes of the end-user.

The commercial success of proactive and attentive
mobile services will be mainly determined by user
acceptance. Latter acceptance depends in turn on whether
such services are grounded by the actual behaviours of end-
user with current and envisioned mobile services. This
implies that the application behaviours of the advanced
mobile services should reflect the expectations and the needs
of the end-user as much as possible. This requires a
grounding of network contexts as well as inference rules used
by the reasoning engine. The question arises how to ground
those network contexts and inference rules.

Grounding of context and inference rules can come about
by rigorous complex network modelling [4]. Modelling of the
grounding process certainly should precede and should
implement any conceptual model for context aware
applications [5]. For our purposes we can restrict ourselves to
classical engineering methods well known in natural language
processing and computer vision, where contextual grammars
together with lexical contexts help reveal and ground
semantic meaning of a word in a sentence [6]. In the case of
our scenario these engineering methods can ground network
contexts robustly by aggregating, processing and predicting

user preferences given business meeting schemes and actual
travel service schedules. By applying network-specific
clustering techniques robust categorisation and
dimensionality reduction of the categorisation of network
situations and contexts can be achieved. Such categorisations
also concern multimodal dialogues and possible schemes
among systems and humans [7], like the presentation schemes
for the alternative travel service schedules.

Approaches for obtaining grounded and robust
categorisation of network contexts can be based on template
matching, Principal Component Analysis (PCA), structural
matching, neural networks, Bayesian Network Classifiers [8],
decision trees, K-Nearest Neighbours, Hidden Markov
Models (HMM [9]), dynamic scale-space paradigms,
reinforcement learning, support vector machines (SVM) [4].
In the case of our commuting sales manager scenario a
geometry underlying the social network is still lacking. Most
of the more sophisticated engineering methods such as PCA
and syntactic or structural matching need a well-defined
geometry to be applicable and to be superior to methods
based on HMM and Bayesian Network Classifiers. Diverse
types of system information (like location obtained via GPS)
can be collected over long time periods to trace the
whereabouts of e.g. the sales manager. Furthermore, these
locations can be gathered in conjunction with other human-
system interactions of the sales manager with his commuter-
assistant system agents. Locations and human-system
interaction and decision behaviours can subsequently readily
be incorporated into a HMM. A Bayesian Network Classifiers
allows in addition to predict a customer’s interaction and
decision behaviours. Thus also his preference schemes
concerning his desired commuter-assistant system service,
e.g. the preferred hierarchy of presented commuting
alternatives given a traffic jam and a business schedule of the
sales manager, can be distilled.

The network contexts grounded by above-mentioned
engineering techniques can form inputs for a model of
Propositional Logic of Context (PLC) [3] that maps each
context sequence into a set of partial truth assignments. Such
a PLC can in turn be embedded in Local Models Semantics /
MultiContext Systems (LMS / MCS).

3.3 Context representation

Knowledge representation is at the heart of the modern
research in artificial intelligence (AI [e.g. 19]). Its principles
and techniques are applicable to contextual reasoning
problems related to mobile services. Knowledge
representation schemes capture namely essential features of a
problem domain and make that information accessible to a
problem-solving procedure. In addition knowledge
representation languages help humans to understand the
problem-solving procedure.

A major problem in network modelling is handling
complexity. A proven method coping with this is data
abstraction consistent with the network model [4]: the
representation of only that information needed for a given
contextualisation purpose should be retained at a certain level
of aggregation. An AI representation language must support

such more human-like qualitative problem solving (rather
than quantitative), reasoning (rather than calculation) and
organising large and varied amounts of knowledge (rather
than implementing a single well-defined algorithm).

In order to cope with qualitative reasoning the bindings
of variable names, objects and values should be handled in a
highly dynamic fashion. E.g. adaptive (learning) systems
taking advantage of above network models have a good
ability for generalisation allowing them to correctly apply
learned knowledge to novel situations.

Typically, representing a problem domain requires a
large amount of highly structured interrelated knowledge. E.g.
not only components of an object (like human and car), but
also their interrelation and combined parts should be
described. Taxonomic information and semantic relationships
are required. Ontologies are ways to capture both meaning
and relationships: an ontology is a formal specification of a
conceptualization [10] where concepts are distinguished by
axioms and definitions stated in a logic. Therefore an
ontology is somewhat similar to a thesaurus, dictionary or
glossary, yet with much greater detail and structure that
enable computers to process its content. By establishing a
common vocabulary among applications, ontologies support
the sharing and reuse of formally represented knowledge.
Ontologies can be categorized by scope as exemplified by the
layered architecture of ontologies developed within the IST-
Project WonderWeb, see Figure 1. Ontologies at lower layers
provide representation requirements for the higher layers,
whereas ontologies at the upper layers provide design
guidelines to the lower layers. They are typically
distinguished as so-called foundational, core ontologies and
application specific ontologies.:

• Foundational Ontologies: contain high-level
domain-independent concepts (broad coverage),

• Core Ontologies: provide domain-specific
infrastructure (medium coverage),

• Application Ontologies: relate concepts and
properties in domain of interest (small coverage).

Foundational ontologies together with the more abstract parts
of core ontologies are sometimes referred to as upper
ontologies.

By providing repositories of standardised knowledge
representation primitives, upper ontologies foster the
semantic interoperability in distributed information systems.
Additionally, the aligning to upper ontologies can provide a
solid underpinning to application ontologies and may help to
exclude terminological and conceptual ambiguities resulting
from unintended interpretations. Last but not least the
principles and engineering methods of sections 3.1 and 3.2
clearly make operational and ground a robust representation
of such ontologies [4].

A higher-level notion of structure (beyond just using
collections of predicates or similar formalisms) helps to deal
with complex concepts in a coherent fashion. Semantic
networks are suitable for such. Here, an algorithm for
reasoning about the domain in question can make relevant
associations simply by following the links in the network. In
addition links can indicate class memberships that allow
properties attached to a class description to be inherited by all
members of the class. Again the engineering methods of

section 3.2 make operational and ground robust semantic
networks [4].

The notion of context is widely studied in different
areas of AI. More on the work of formalisation of context in
AI can be found in [11,12] and on contextual reasoning in
multi-context systems in [13]. Examples of contextual
reasoning with regard to the integration of heterogeneous
knowledge and databases can be found in [14,15,16].

Figure 1. Ontology structuring.

3.4 Reasoning methods

Contextual reasoning serves a selection and decision
making process concerning which applications and services to
offer or to provide a network entity given a particular
situational context. The basis of any contextual reasoning
method in pervasive computing is a network model (see also
section 3.2) that describes and predicts the states and
dynamics of all past, existing and future network entities.
Such a model actually defines the reasoning methods that are
applicable. Furthermore, it defines also possible contexts
along which or to which those reasoning methods may be
subjected.

Logically well-founded ontologies do not only offer ways
for describing a domain of interest (see section 3.3), but also
allow to reason about the represented information. Ontology
reasoning in terms of domain specific conceptualization
requires logic-based inference systems that have been well
studied within the field of knowledge representation in the AI
community in the past. Description Logics (DLs) as a
decidable fragment of first-order predicate logic turned out to
be an adequate formalism for representing and reasoning
about expressive ontologies [17]. DLs form the formal
foundation of W3C's Web Ontology Language (OWL) [18].

In simple words, contextual reasoning is about
interpreting a specific issue in a complex network given
particular contextual constraints, e.g. which transportation
means to choose and suggest given the schedule and
preferences of sales manager Ferdinand. Such a reasoning
process may yield an instance of a key element needed in a
further selection or decision process, e.g. when the taxi is
suddenly delayed. Such a key element may in turn be
expressed in terms of a grounded upper-contextual reasoning
serving selection and decision making about related issues.

In the interpretation process, use can be made of various
reasoning techniques (e.g. rule-based systems, model-based

Time

Application
Ontologies

Core
Ontologies

Foundational
Ontologies
(meta level) -

 Physical
 Object

 Mental
 Object

 Action Document IntentionNorm

Location U
pp

er
 o

nt
ol

og
y

D
om

ain
sp

ec
ifi

c
on

to
lo

gy

reasoning, case-based reasoning, see e.g. [19]) and knowledge
bases (containing both general knowledge as well as case-
specific information) that are consistent with a particular
network model. For example in a rule-based system, this
knowledge is represented in the form of if… then… rules. The
inference engine is essentially an interpreter for the
knowledge base; it applies the knowledge to actual problems.
Reasoning can deal with partial context information such that
implicit information can be inferred. Typically the upper
context ontology uses standard vocabulary, like OWL, and is
supported by of the shelf reasoning components like RACER
[20] (see section 4).

Reasoning allows entailed (or “new”) knowledge to be
inferred from a set of facts and rules. Essential to any
intelligent entity is the ability to derive additional knowledge
from a world description. It is impossible to store an
inflexible description of every possible situation, hence
abstract descriptions of classes of objects and situations (see
section 3.3) are used to formulate and reason about. For
example, the rule “for all X, X is clear if there does not exist a
Y such that Y is on X” allows the system to infer - from given
facts - whether or not there is something on top of another
object. The variables make the intelligent system as general as
possible.

The ability to learn from examples, experiences, or high-
level instructions (instead of being hard-coded) depends on
the application of meta-knowledge. Meta-knowledge is about
“knowing about what you know”. E.g. an intelligent system
should not only know things but also should know what it
knows. It should be able not only to solve problems but also
to explain how it solved the problems and why it made certain
decisions. It should recognize the limitations of its knowledge
and learn from its interactions with the world.

The commonsense human approach to problem solving
supports the hypothesis that exploring alternative choices
solves NP (Nondeterministically Polynomial) problems. This
problem-solving approach underlies the state space search
technique. This technique provides a means for automating
intelligent or heuristic strategies for selectively exploring the
problem-solution space. Here intelligence and heuristics
guide the search along lines that have a high probability of
success while avoiding wasted or apparently stupid efforts.
A state space may be searched in two ways: either from the
given data of a problem instance toward a goal (‘data-driven’)
or from a goal back to the data (goal-driven’). Data-driven
search is also referred to as forward chaining; goal-driven as
backward chaining. In forward chaining you start with the
given facts of the problem and a set of rules for changing
state. Search proceeds by applying rules to facts to produce
new facts, until a satisfactory goal condition (“relevant
context information”) is reached. In backward chaining one
starts with the goal and considers the rules that could be used
to generate that goal and tries to determine what conditions
must be true to use them. These conditions become then the
new goal for search, until the working backwards ends at the
fact of the problem. Again the engineering methods of section
3.2 can make operational and ground data-driven and goal-
driven searches [4].

Applied to our commuter-assistant scenario: The
inference and hierarchical ordering mechanisms are the most
crucial from a contextual reasoning perspective. The former
and the collection mechanisms are initiated by the secretary-
commuter system whenever inconsistencies occur between
the actual travel scheme of the sales manager and those of the
travel service providers. For the Travel Preference Scheme
Provider a dynamic user profiling management system is
indispensable. It may do history management and apply
several engineering methods about past travel service
interactions and decisions of the sales manager. This allows to
distil grounded and ordered travel schemes related to time,
locations, inconsistencies between actual travel schedule of
the sales manager and those of the travel service assistants
and business meeting schedules [6]. Furthermore, it allows
the commuter-assistant on the basis of the above contexts to
infer and to display at run-time this preferred order of travel
alternatives by a concatenation of event condition action
rules. In order to apply those context-dependent rules several
technologies exist, which are surveyed in the next section.

4. ENABLING TECHNOLOGIES
Machine languages, reasoning engines and tools can

help to support contextual reasoning on categorisations of
various networks. They can provide mechanisms to represent
data, applications and services, and enable to reason on data
by applications or services. In our commuter-assistant
scenario such enabling technologies can help contextualize
the travel services on the basis of the business schedules and
the preferences of the sales manager.

4.1 Machine languages

To reason on context by means of machines, it
should be defined in some formal language that can be parsed
by an automaton. Many of such machine languages have been
proposed for intuitively representing concepts like business
schedules, preferences and travel services in expert systems,
planning systems, knowledge management systems, etc.
Formal logics and languages provide a more or less natural
translation of those concepts into objects or agents of a related
computational model.

Nowadays, there exist several languages that can
handle both exchanging objects across the World Wide Web,
as well as dealing with cooperation among heterogeneous
agents. Examples of these are Knowledge Interchange Format
(KIF) [21], Open Knowledge Base Connectivity (OKBC)
[22], XML-based Ontology exchange Language (XOL) [23],
Resource Description Framework (RDF) with RDF data
query language (RDQL [24]), Darpa Agent Markup
Language (DAML) plus Ontology Inference Layer (OIL)
(DAML + OIL) and Web Ontology Language (OWL), see
also Figure 2.

KIF was one of the first knowledge representation
languages. It enables the interchange of knowledge among
disparate programs.

OKBC is a frame-based language. It provides a uniform
model of Knowledge Representation Systems (KRSs)
supporting networked as well as direct access to knowledge
bases. The Foundation of Intelligent Physical Agents (FIPA)
uses the OKBC representation.

XOL enables the exchange of ontology definitions
among different systems like database systems, ontology
development tools or application programs.

RDF provides a lightweight ontology system to support
the exchange of knowledge on the Web. It can be used to for
instance to describe statements like “Ferdinand … late for his
train connection”. Key element of this approach is the relation
(called ‘predicate’) between concepts that can be traversed to
reason on concepts (e.g. context “This morning he has an
appointment with some customers for a major business deal
and he does not want to come late.”). RDQL enables
specification of queries to retrieve certain concepts, e.g.
preferences and travel services, from an ontology given a
particular context.

Figure 2. Language extensions and dependency between data models, logical

paradigms and standards.

DAML + OIL is a joint standard for specifying and

exchanging ontologies. Its definition is based on existing
frame-based language such as OKBC, XOL RDF and RDF
Schema with richer modelling primitives.

OWL is a W3C standard for ontology and metadata
representation that facilitates machine interpretability of Web
content and enables applications processing this content. It is
based on DAML+OIL, XML and RDF/RDF-S. OWL is
defined as three sublanguages: OWL Lite, OWL DL and
OWL Full with a growing level of expressiveness and
complexity. Choosing between them is based on one’s
requirements in engineering ontologies. Generally speaking,
the design decision treats the trade-off between the
expressiveness of OWL versus an efficient OWL reasoning
support. OWL Lite and OWL DL represent the decidable
fragment of OWL with good tool and complete reasoning
support.

Currently OWL is becoming the standard for specifying
metadata. Advantages of OWL-DL are its expressivity,
monotonicity, and decidability. Disadvantages are its
language complexity and lack of support for property

chaining and it does not allow for procedural attachments. It
has however, good tool support and enables us to reason on
concepts by traversing relationships. Therefore, for our
scenario, OWL-DL is the most feasible specification language
to use and in our limited scenario we might even suffice for
OWL-lite.

4.2 Reasoning engines

An individual expert system applies its inference engine
to a database of knowledge in search for solutions to a given
problem. Distributed knowledge management systems rely on
the co-operative capabilities of various individual expert
systems to solve more complex problems. In our scenario,
one can readily imagine that contextual reasoning and
cooperation is needed whenever the sales manager is abroad
and still using his commuter-assistant service e.g. to go to a
conference. Having an appropriate meta-ontology available
that relates the different ontologies across the globe,
reasoning systems can make appropriate decisions to adapt or
activate an application or service on the basis of an observed
context all represented in the ontology at hand. These
reasoning systems can be rule-based, constraint-based or
probabilistic.

Rule-based reasoning engines can use Prolog [19], a
subset of first order logic, as a logic language to define rules.
For example, open source and Java-based JTP [25] provides
besides a hybrid reasoning system architecture also a
reasoning system component library that enable rapid
building, specializing, and extending of (backward-chaining
and forward chaining) reasoners based on such rules. Each
reasoner in a JTP hybrid reasoning system can embody
special-purpose algorithms and maintain JTP system's
knowledge. Another example is Jess (Java Expert System
Shell) [26] that supports the development of rule-based
systems, which can be tightly coupled to code written in the
Java language.

Constraint-based reasoning engines use the inherent
constraints in a problem to rule out impossible alternatives
before and during the search for a solution [27]. They are in
particular valuable in our scenario in which the system is
simultaneously confronted with several scheduling, planning,
resource allocation and routing problems. There exists a
complete environment for the design and development of
such decision support systems called ChiP [28].

The choice for every component (e.g. reasoning engine)
in the reasoning process depends heavily on the choice of
machine languages. As we chose for OWL as machine
language the other components should comply with this
language. E.g. in [29] an implementation of a context aware
application is done by using OWL, in combination with
RACER and JESS.

4.3 Tools

Several OWL tools exist such as API’s/parsers like Jena
[30], OWL API [31] and OWLP[32], and graphical OWL
editors of ontologies, like Protégé [33] and SWOOP [34].
Another tool is KAON [35] that enables ontology creation
and management. It provides a framework for building

e.g. KIF, KBC

applications that require scalable and efficient ontology-based
reasoning. RACER [20] provides a description logic based
reasoner for managing and reasoning about ontologies. It is
OWL-compatible and has semantic middleware for proof
checking, ontology validation and classification.

For rapid development of context aware mobile services
there exist the Context Broker Architecture (CoBrA) [36] or
SOUPA [37], and GAIA [38] infrastructure. Making use of
our context categorizations, contextual reasoning methods
and appropriate ontology they could help realizing our
scenario very quickly.

CoBrA is an agent-based architecture for supporting
context aware systems. Central is a context broker who
maintains a shared network model, ontology and a common
policy language on behalf of a network of agents (being SW
agents, context providers, context brokers, context aware
service providers, users and customers), applications,
services, communication and computational networks, and
devices. The CoBrA and SOUPA ontology are both designed
to model and to support pervasive computing context aware
applications and services and are OWL compliant. The
extensible CoBrA model can represent, manipulate and access
context information for the purpose of context aware service
provisioning like in our scenario. First-order probabilistic
logic, high-order logic and Bayesian network methods can be
applied for further reasoning about various context
information important for both controlling and regulating
attentively and proactively existing and novel context aware
services.

GAIA is a CORBA-based development infrastructure for
building interacting autonomous agents. It provides event,
presence, discovery and naming services to agents. With
increasing network complexity there is a high need for ways
of sustaining robust service discovery, matchmaking,
interoperability and context awareness of agents. A GAIA
compatible ontology has been developed for just that purpose
[39]. It can sustain - despite the rise in complexity of even the
overall network dynamics - descriptions of agents and their
relations, rules or policies for agents and their relations, and
the different types of contextual information. This way GAIA
can augment configuration management, discovery and
matchmaking, HCI, interoperability and context aware
services. Thereto, GAIA ensures that the Ontology Server
maintains the ontology. For checking logically consistency of
the ontological concepts, logical retrieval and (context)
reasoning about the autonomous agents the CORBA FaCT
Reasoning Engine is used. For dynamic discovery purposes
the Ontology Server registers regularly with the CORBA
Naming Service.

5. REALISATION AND EXPERIENCE

To demonstrate the concepts and techniques for
context reasoning that are outlined in this paper, we have built
a demonstrator that implements the first part of the scenario
mentioned in section 2, namely that part of the scenario where
the commuter is notified of the fact that he has just missed his
train. Even such a simple notification requires substantial

intelligence in gathering relevant context information and
reasoning about that information. Due to the fact that
information, such as the train is leaving now, is probably not
available directly, it has to be obtained from other indirect
sources.

The commuter in our scenario has a number of location
providers at his disposal that are all wrapped as a semantic
web service that relates local concepts to a central and widely
accepted ontology. All these location providers can be
discovered, and advertise their interface description as well as
other relevant parameters like costs, accuracy et cetera. We
have implemented a number of example context wrappers
(compare the functional view [40] in Figure 3), including:
• GSM GPS location wrapper, which is a wrapper around a

Bluetooth-enabled GPS receiver connected to a Symbian
7 phone. It delivers location information.

• GSM Cell ID wrapper, which offers information on the
GSM cell in which a Symbian 7 phone is currently
located. Together with a GSM cell to location converter
this could be used as a source of location information as
well.

• Messenger wrapper, which connects to Windows
Messenger and delivers information on the status of a
user on a PC or laptop.

• Outlook wrapper, which connects to Microsoft Outlook.
It can give information on the scheduled activities of a
user and the location of those activities.

Figure 3. Functional view of context sources: various context-based reasoners
and wrappers all deliver context information and inference rules can be

defined at the reasonerInterface.

These wrappers hide platform- and device specific

details from the generic infrastructure. Amongst the wrappers
above are three that can act as a source of location
information, in various forms, that we use for our reasoning
validation case on the commuter-assistant scenario.

One of the platform specific components allows
Symbian 7 phones to advertise an ‘Awareness
ContextProvider’ service to the outside world, see the
screenshot in Figure 4. This means that software running on
another Bluetooth enabled device can scan for devices that
offer this service. They can then connect and (if allowed by
the owner of the device) retrieve context information from
that device in a peer-to-peer fashion.

+InferContextInfo
+DiscoverInferenceRule

«AbstractComponent
Context-Based Reasoner

+InterpretKnowledgeBase()

«AbstractComponent»
Inference_Engine

«AbstractComponent»
ContextServiceAdapter

«AbstractComponent
ContextSource

«AbstractComponent
ContextWrapper

«AbstractComponent»
ContextAggregator

+DefineRule()
+DeleteRule()
+DiscoverRule()

«interface»
ReasonerInterface

«AbstractComponent»
ContextStorage

«AbstractComponent»
ContextPredictor

-S

*

-Sink *

«AbstractComponent»
AmbiguityResolver

1 *

GPRS
network

Context Provider

Wifi location
service

Context Reasoner

Communication
monitor

Context Provider

Network statusLocation Location

Commuter
reasoner

Context reasoner

Event

Connected networks

MAC
Cell-based

location

Your train has

Wifi - based
location

Agenda
server

Context Provider

Agenda

Next
destination Figure 4. Bluetooth services available on a device.

Depending on the user profile and the current task, a

relevant location provider is selected from a hierarchy of such
providers to obtain location information. For example, the
user profile indicates that costs should be minimal. The result
is that the context manager uses the GPS Location Provider
when the commuter is walking towards the station, but
switches to the P2P Location Provider when the GPS looses
its fix. When that does not result in a viable location, it
switches to the Local Location Provider (which might cost
some money, see the discussion in section 2) and it uses the
Network Location Provider as a backup if everything else
fails.
 In Figure 5, we display a specific constellation of a
set of context providers and reasoners to deliver this event
information (train has left) irrespective of the communication
channel (in the example: GPRS or Wi-Fi). With the help of a
context reasoner it becomes possible to switch from a GPRS
location provider (cell-ID based) to a local location provider
(using the Wi-Fi hotspot’s MAC address as input), when the
user is roaming seamlessly from GPRS to Wi-Fi, and vice
versa. This is done by using a context reasoner component
that monitors a third context provider for changes in the type
of network used by the end-user. Upon such a change, it
switches seamlessly to another location provider.

Figure 6 and Figure 7 show screenshots taken from
the mobile terminal showing the situations of detection of a
access network change by the communication monitor. It
alerts the commuter reasoner, which in turn changes the
location providers with the result being that Ferdinand also
has location information while being inside the station
building. Moreover, this location information is provided on
the lowest costs possible due to his user preference setting.
The commuter reasoner also has access to other context
providers, including one that wraps the commuter’s schedule.
With that information it uses an external service provider, in
this case a public transport planner, to plan Ferdinand’s
optimal travel schedule. As a next step, the context reasoning
comes into play. We use a rule-based system for reasoning,

with an OWL ontology as knowledge base. From the travel
schedule (that is accepted by the commuter), his location and
the current time, it derives the fact that the commuter is bound
for a certain train. This can be expressed as a rule at the
commuter reasoner interface (compare Figure 3 [40]). The
rule being “if user is moving in the direction of the scheduled
location of a transport vehicle mentioned in his travel
schedule in the assigned time slot, he is bound for that
vehicle”. The context of bound-to is described in the OWL
ontology. When that rule is evaluated positively, an event
triggers the process that starts the monitoring of the particular
transport vehicle.

Figure 5. A specific example of a provider-reasoner constellation to deliver a
notification that his train has left, based on location information of a group of

users with the same destination.

The monitoring of this vehicle (in this case the train)
could be as easy as setting a trigger in a central service
offered by the railroad company upon the departure of a
particular train. In most countries, such a service does not
exist, but fortunately there are alternatives in case based
reasoning. This method uses the group of users of the same
system that are also bound for the same train. Their collective
location information can be used – in an anonimized way - to
infer that the train has left [41]. This can also be formulated in
a rule based reasoning system: if the locations of a substantial
subset of the group of users bound for a train match, that
matching location is the location of the train. And if the
location of the train moves away from the departure station,
the train has left. And if the train has left without the
commuter, he gets a notification of that very fact. Inclusion of
such system dynamics as the behaviour and situation of others
bound for the same train is our next goal in implementation.
This extends on the state-space search, which we know is not
sufficient for our goal, since we need rather a characterization
of system dynamics [4]. Further we will extend the validation
of our designed reasoner components, including the
ambiguity resolver with multiple location providers

Figure 6. The initial situation: Ferdinand is outside the station IP-connected
via GPRS; the location provider is the GPRS network-operator (based on

cell-ID).

Figure 7. The situation after Ferdinand entered the train-station, coverage
area of a public Wi-Fi hotspot. A seamless handover has taken place from

GPRS to Wi-Fi, and based on that (network) context information the context
reasoner has decided to switch from location provider as well.

6. CONCLUSIONS

In this paper, we described context-based reasoning –
from principles and methods, needed grounding and
representation means to existing tool, ontologies, and
languages support. We analysed a commuter-assistant
scenario with respect to the context provisioning and
reasoning required and reported on our first validation
findings. Our context-reasoning components are designed in a
generic architecture for context processing entities, managed
by a context provider. The different sources of context
information, being various reasoners and wrappers, support
intelligent processing of context information. Several location
sources are wrapped as semantic web services, provider
advertisements are realised and intelligent provider-reasoner
constellation is implemented enabling optimal location
provider selection allowing for further optimal location
interpretation. This enables the first part of our scenario:
notifying the commuter that he has missed his train. Our
future work is dedicated to a further implementation of
reasoning components that enable aligning commuting and
meeting preference schemes. It includes an ambiguity
resolving component, capable of solving multiple, possibly
contradicting location objects.

ACKNOWLEDGEMENTS

The authors thank Martin Wibbels and Hans
Zandbelt for their contributions.

REFERENCES

1 H.van Kranenburg, A.Salden, H.Eertink, R. Van Eijk, J.

de Heer, Ubiquitous attentiveness – enabling context
aware mobile applications and services, Proc. EUSAI
2003, LNCS 2875, Ambient Intelligence, pp. 76-87,
2003.

2 M. Benerecetti, P. Bouquet, and C. Ghidini, Contextual
Reasoning Distilled, Journal of Theoretical and
Experimental Artificial Intelligence, 12(3): 279--305,
July 2000.

3 L. Serafini, P. Bouquet, Comparing formal theories of
context in AI, v. 155, i. 1-2, p. 41 – 67, 2004.

4 A. H. Salden and J. de Heer, Natural Anticipation and
Selection of Attention within Sustainable Intelligent
Multimodal Systems by Collective Intelligent Agents,
Proceedings SCI 2004, Orlando, Florida, USA.

5 H. Ailisto, P. Alahuhta, V. Haataja, V. Kyllönen, M.
Lindholm, Structuring Context Aware Applications,
Ubicomp workshop, Gothenburg, Sweden, 2002.

6 S. Harnad, The Symbol Grounding Problem, Physica D,
42, pp. 335-346.

7 J. Chai, S. Pan, M.X. Zhou, K. Houck, Context-based
Multimodal Input Understanding in Conversational
Systems, Proc. ICMI’02 (Pittsburgh, Pennsylvania,
2002), IEEE Computer Society, 87-92.

8 D. Astuti, Context Inference, Seminar on Research

Themes in Context aware Computing, Department of
Computer Science, Un. of Helsinki, Finland, 2004.

9 D. Ashbrook, T. Starner, Learning Significant Locations
and Predicting User Movement with GPS, 6th Int.
Symposium on Wearable Computers, 2002.

10 T. Gruber. A translation approach to portable ontology
specifications. Knowledge Acquisition, 5(2):199–220,
April 1993.

11 V. Akman and M. Surav, Steps toward formalising
context, AI Magazine, 1996, pp 55-72.

12 J. McCarthy, Notes on formalizing context, Proc.
IJCAI’93, 1993.

13 F. Giunchiglia, contextual reasoning, Epistemologia,
special issue on I Linguaggi e le Macchine, 1993,
XVI:345-364.

14 Farquhar, A. Dappert, R. Fikes, W. Pratt, Integrating
Information Sources Using Context Logic, Proc. of
AAAI Spring Symp. on Information Gathering from
Distributed Heterogeneous Environments, 1995.

15 J. Mylopoulos, R. Motschnig-Pitrik, Partitioning
Information Bases with Contexts, Proc.3rd Int. Conf. on
Cooperative Information Systems, 1995.

16 C. Ghidini and L. Serafini, Model Theoretic Semantics
for Information Integration, Proc. AIMSA'98, volume
1480 of LNAI, 1998.

17 S. Staab et al. Handbook on Ontologies. Springer, 2004.
18 W3C. OWL Web Ontology Language Reference.

http://www.w3.org/2004/OWL/
19 G.F. Luger and W.A. Stubblefield, Artificial Intelligence.

Structures and strategies for complex problem solving.
Addison Wesley Longman, 1998

20 http://www.sts.tu-harburg.de/~r.f.moeller/racer/
21 American National Standard for KIF, 1995,

http://logic.stanford.edu/kif/specification.html
22 V.K. Chaudri, Open Knowledge Base Connectivity,

version 2.0.3, Apr’98, http://www.ai.sri.com/~okbc/
23 Pangea systems, Artificial Intelligence center, XML-

based Ontology exchange Language specs, vs0.4,
Aug’99, http://www.ai.sri.com/pkarp/xol/xol.html

24 http://www.w3.org/Submission/2004/SUBM-RDQL-
20040109/

25 R Fikes, G. Frank, J. Jenkins, JTP – A System
Architecture and Component Library for Hybrid
Reasoning. Un. of Stanford, 2003.
http://www.ksl.stanford.edu/software/JTP

26 Jess – the Rule Engine for the Java Platform.
http://herzberg.ca.sandia.gov/jess/

27 R. Bartak, An online guide to Constraint Programming.
http://kti.ms.mff.cuni.cz/ ~bartak/constraints/index.html

28 CHiP: Constraint Handling in Prolog.
http://www.cosytec.com/production_scheduling/chip/opti
mization_product_chip.htm

29 M. Wagner, W. Kellerer, An Ontology Reasoning Use
Case for Situation-aware Services, WWRF #11, Oslo,
June 2004.

30 Jena, http://www.hpl.hp.com/semweb/jena2.htm,

http://jena.sourceforge.net/ and
http://www.hpl.hp.com/semweb/jena.htm

31 OWL API, http://owl.man.ac.uk/api.shtml
32 OWLP, http://www-db.research.bell-

labs.com/user/pfps/owlp/
33 http://protege.stanford.edu/
34 MindSwap, SWOOP,

http://www.mindswap.org/2004/SWOOP/
35 http://kaon.semanticweb.org/
36 H. Chen et al., An Intelligent Broker for Context aware

Systems, Adjunct Proc. of Ubicomp 2003,
http://cobra.umbc.edu/ontologies.html

37 H. Chen et al., SOUPA: Standard Ontology for
Ubiquitous and Pervasive Applications, Proc. Int. Conf.
on Mobile and Ubiquitous Systems: Networking and
Services, August 2004. http://pervasive.semanticweb.org/

38 M. Roman, C.K. Hess, R. Cerqueira, A. Ranganathan,
R.H. Campbell, K Nahrstedt, GAIA: A Middleware
Infrastructure to Enable Active Spaces, IEEE Pervasive
Computing, vol. 1, no. 4, pp. 74-83, 2002.

39 A. Ranganathan, R.E. McGrath, R.H. Campbell, M.D.
Mickunas, Ontologies in a Pervasive Computing
Environment, Proc.18th Int. Joint Conf. on Artificial
Intelligence, Workshop on Ontologies and Distributed
Systems, 2003.

40 H. van Kranenburg, H. Eertink, Processing
heterogeneous context sources, Proc. SAINT 2005, Next
Generation IP-based Service Platforms for Future Mobile
Systems workshop (Trento, Italy), ISBN 0-7695-2263-7
(IEEE), pp. 140-143, 2005.

41 B. Hulsebosch, A. Salden, M. Bargh. Context-based
Service Access for Train Travelers, Proc. EUSAI 2004,
Eindhoven, Netherlands.

