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Abstract - This paper reflects our findings on the 
technological feasibility of a mobile service scenario. We will 
show that despite the scenario being quite ordinary for end-
users, the required service support functionality is rather 
complex. The realisation hinges on intricate grounded contextual 
reasoning about location information, user profiles and other 
situational context information. In particular, existing 
engineering methods and state-of-the-art technologies very well 
enable, for example, timely warning of a sales manager, who is 
late for and on his way to a business meeting. Furthermore, such 
techniques readily enable recommending the ‘best’ alternative 
travel schemes such that he arrives in time for his meeting. We 
report on our findings with implementing a sophisticated 
location reasoner of such a commuter-assistant that ultimately 
aligns commuting and meeting preference schemes of the sales 
manager.  

1. INTRODUCTION 

Applications can be enriched by being aware of the 
end-user context. It enables applications to be tailored to the 
needs and situation of users. Especially in the case of mobile 
applications and moving end-users this adds to an increased 
user appreciation and perception of added value services. For 
application providers, context aware services offered by an 
innovative service infrastructure are beneficial. This enables 
them to develop context aware applications with a short time 
to market. Such context aware services typically provide 
context gathering and interpretation functionality. Examples 
of context gathering services concern information on location, 
transportation means, traffic jams, priority and business-
meeting schedules, while context interpretation typically 
concerns inferring transportation speed, projected arrival time 
and alternative travelling schemes. With services pro-actively 
responding to upcoming relevant changes in the environment, 
users are even better served. Such attentiveness and 
anticipatory aspects are part of a ubiquitous attentive system 
[1] that we aim at.  

Contextual reasoning is a key element in context 
aware services; it involves processing network context. Here 
a network does not only concern a heterogeneous storage, 
computation and communication network (including end-
devices) with middleware and application services and 
platforms living on top. Social and business networks may as  
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well be parts of such a network. Of course, those networks are 
generally intertwined, attached or coupled to make a dynamic 
complex network. Thus, innovative services should be 
capable of reorganising and coordinating current and future 
networks at and surrounding the mobile node of an individual 
or group of end-users. The latter means that on the basis of 
analyses of various types of contextual information objects a 
selection and decision has to be made - at run-time - about 
those services to be offered or delivered to a user. For truly 
optimal contextual service offerings grounded contextual 
reasoning is a necessity. In the case of our scenario it means 
that on the basis of business meeting schedules and personal 
profiles and preference schemes a robust hierarchy of 
alternative ways of commuting to work have to be presented 
to the manager keeping in mind the manager’s next business 
meeting and his current situation.  

The basic principles of contextual reasoning are 
explained in [2]. In simple words, context reasoning is about 
deducing entailed contextual information from the various 
sources of context information. In the case of our context 
aware mobile services the problem of contextual reasoning 
concerns understanding which, why, when and how specific 
inference mechanisms compliant with multiple network 
contexts are used by and are valuable to people. In this 
respect, reasoning about heterogeneous network contexts for 
pervasive environments can certainly profit from the expertise 
residing in AI with regard to integration of heterogeneous 
knowledge and databases [3]. However, despite the large 
amount of work on context reasoning, we are very far from a 
general accepted network theory for contextual reasoning. So 
far, special forms of contextual reasoning have been proposed 
for specific purposes, but no one has succeeded (yet) in 
unifying all this work in a sensible single theory. The result 
has been a fragmentation of interests, methodologies and 
technical tools. In section 3, we give an overview of these and 
discuss this further.  

Our paper is organised as follows. In section 2, we 
present and analyse our commuter-assistant scenario:  our 
manager has just missed his train, but his mobile agent is 
perfectly aware of his whereabouts and the traffic and 
business situation he is in, and suggests viable alternatives by 
using contextual reasoning methods. In section 3 and 4, we 
review the principles, engineering methods and state-of-the-
art technologies that can help in realising contextual 
reasoning in our scenario. We report on our first experiences 
and experimental results in building such a commuter-
assistant system in section 5.  



 

2. COMMUTER-ASSISTANT SCENARIO 

This section describes a scenario in which contextual 
reasoning plays an important role to assist sales manager 
Ferdinand in choosing the best means of transport based on 
his business schedule and real-time public transport 
information. It demonstrates the complexity of the network 
context providers and reasoning required. 

 
It is a cloudy morning and Ferdinand is in a hurry. Ferdinand 
is a sales manager of a major financial institute. Because of 
all the traffic jams, he prefers to travel by public transport. 
This morning he has an appointment with two customers for a 
major business deal and he does not want to come late. 
Ferdinand steps out of the bus and notices that he is rather late 
for his train connection. He runs to the train station, but 
before even entering the station, he already gets a notice from 
his mobile device that his train has left. At least that saves 
him a run to the platform, and even better, the system 
automatically gives him alternative travel schemes:  
“Ferdinand, you can travel by taxi or by bus. Taxi is more 
expensive (€15,-) and normally it would get you on time to 
your appointment. However, at this moment there is a large 
queue of people waiting for a taxi. So at this moment, the bus 
is the best alternative. It is less expensive (€ 4,-) but will bring 
you 10 minutes late to your appointment. The bus is standing 
on platform 5 and leaves in 3 minutes.” 
Ferdinand decides to go for the bus, and hence he is 
scheduled to arrive 10 minutes late at his appointment. The 
system informs the customers that Ferdinand will be 10 
minutes late and that he is currently in the bus on highway 
N35. Although Ferdinand will be late on his appointment the 
waiting time for his customers is minimized and they have 
timely feedback on his status. 

 
To realise such a commuter-assistant scenario one has to 

keep track of the actual and past user travel preferences and 
service issues, such as arrival and departure times, location, 
platforms, meeting times, costs, etcetera. This requires the 
following context providers and services: 

• Travel Preference Scheme Provider;  
• Business Meeting Scheme Provider;  
• Train Service Provider;   
• Taxi Service Provider;  
• Bus Service Provider; 
• Location Provider. 

It is important to note that these are broad classes of context 
providers, differing - even within a class - in quality of 
context, usage characteristics, costs, and availability. To make 
this more concrete, consider the diversity of location 
providers for the commuter in our scenario: 
• GPS location provider, residing on his mobile device, 

communicating with his GPS receiver, good precision, no 
costs, available outdoors and limited by battery power; 

• Network location provider, service residing in the 
telecom operator domain, accessible via GPRS/UMTS, 
available with broad coverage, limited precision, costs 
are involved, requires subscription and authorisation; 

• Local location provider, uses locally available 
communication channels (Bluetooth, Wi-Fi, RF, GPRS) 
to spot the identity of other nearby devices/cells/tags and 
does a lookup in a central registry to obtain the location 
of the static ones (if available), precision and costs 
depends on the communication channel, availability 
limited by nearby devices and coverage of the central 
registry; 

• P2P location provider scans via a small area network 
(e.g. Bluetooth) for nearby devices that offer a location 
service, works everywhere, usually free of charge, 
availability depending on peers. 

To present Ferdinand timely with alternative travel schemes 
the commuter-assistant system needs to collect data from 
several context providers and reason with the contextual 
objects to do a rightful interpretation and come up with 
optimal transportation recommendations. Necessary steps 
include: 

• Collecting time-schedules and meeting-priority;  
• Collecting available travel services and their 

transport timetables; 
• Collecting locations (of Ferdinand, train, available 

taxis); 
• Collecting traffic situation (like traffic jams); 
• Inferring price and expected arrival time at the 

meeting’s location for the available travel service 
providers (e.g. 2 taxi providers and 1 bus); 

• Inferring the impact of selecting either of the 
available travel provider service offerings (e.g. 
projected time of too-late arrival with the current 
situation, risk of another delay yet to occur);  

• Inferring hierarchical ordered list with best two 
alternative travel schemes. 

The service of the commuter-assistant system to Ferdinand 
might seem simple to an end-user. Nevertheless, the analysis 
in this section makes clear that quite innovative and 
complicated service support functionality on context 
gathering and reasoning is required to realise it.  

3. REASONING FRAMEWORK 

In the following paragraphs we first present the main 
principles of contextual reasoning followed by the most 
relevant engineering methods for grounding and categorising 
contexts robustly. Using these principles and categorisation 
approaches suitable context representation and reasoning 
methods are presented. 

3.1 Principles 

Contextual reasoning exploits relationships among local 
structures engendered by different contexts. For example, the 
business scheme and the travel preferences of the sales 
manager determine how to weigh the different travel service 
alternatives and how to present them. Herein two general 
principles underlie contextual reasoning [3]: 

• Principle of locality - reasoning about local 
structures takes place in partial, approximate, and 
perspective representations of the world; 



 

• Principle of compatibility - constraints on the 
reasoning process are in line with one or more 
context-models.  

Contextual reasoning for advanced mobile services boils 
down to making (fuzzy) truth assignments for such a service 
on the basis of contextual parameters provided and assessed 
by various network entities. These network entities can for 
example yield: 

• Heterogeneous network contexts (e.g. “He missed 
the train and thus is confronted with a specific travel 
service schedule and has the following upcoming 
business meetings”); 

• Hierarchies of nested network contexts (e.g. “He 
prefers an ordering of alternative travel services 
according to his preferences.”).  

Raw network data can form low-order context for a 
mobile service, while interpretations and combinations of 
lower-order contexts can yield higher-order contexts. 
Relevant low or high-order network contexts for a mobile 
service can be constructed on the basis of network models. 
Such models can generate hierarchies of nested network 
representations of various granularities that can serve network 
context representations. In other words, such models can yield 
various categorisations of network contexts that in turn can be 
used for contextual reasoning purposes. 

3.2 Context categorisation 

In contextual reasoning about mobile service 
provisioning the reasoning engine can take various network 
contexts as constraints for making appropriate inferences. 
Following our scenario network contexts can involve various 
actual travel service schedules, but also business meeting and 
preference schemes of an end-user. An inference of what 
mobile service to deliver given those contexts can be 
expressed in terms of a concatenation of logical operations on 
the actual schedules and schemes of the end-user. 

The commercial success of proactive and attentive 
mobile services will be mainly determined by user 
acceptance. Latter acceptance depends in turn on whether 
such services are grounded by the actual behaviours of end-
user with current and envisioned mobile services. This 
implies that the application behaviours of the advanced 
mobile services should reflect the expectations and the needs 
of the end-user as much as possible. This requires a 
grounding of network contexts as well as inference rules used 
by the reasoning engine. The question arises how to ground 
those network contexts and inference rules. 

Grounding of context and inference rules can come about 
by rigorous complex network modelling [4]. Modelling of the 
grounding process certainly should precede and should 
implement any conceptual model for context aware 
applications [5]. For our purposes we can restrict ourselves to 
classical engineering methods well known in natural language 
processing and computer vision, where contextual grammars 
together with lexical contexts help reveal and ground 
semantic meaning of a word in a sentence [6]. In the case of 
our scenario these engineering methods can ground network 
contexts robustly by aggregating, processing and predicting 

user preferences given business meeting schemes and actual 
travel service schedules. By applying network-specific 
clustering techniques robust categorisation and 
dimensionality reduction of the categorisation of network 
situations and contexts can be achieved. Such categorisations 
also concern multimodal dialogues and possible schemes 
among systems and humans [7], like the presentation schemes 
for the alternative travel service schedules. 

Approaches for obtaining grounded and robust 
categorisation of network contexts can be based on template 
matching, Principal Component Analysis (PCA), structural 
matching, neural networks, Bayesian Network Classifiers [8], 
decision trees, K-Nearest Neighbours, Hidden Markov 
Models (HMM [9]), dynamic scale-space paradigms, 
reinforcement learning, support vector machines (SVM) [4]. 
In the case of our commuting sales manager scenario a 
geometry underlying the social network is still lacking. Most 
of the more sophisticated engineering methods such as PCA 
and syntactic or structural matching need a well-defined 
geometry to be applicable and to be superior to methods 
based on HMM and Bayesian Network Classifiers. Diverse 
types of system information (like location obtained via GPS) 
can be collected over long time periods to trace the 
whereabouts of e.g. the sales manager. Furthermore, these 
locations can be gathered in conjunction with other human-
system interactions of the sales manager with his commuter-
assistant system agents. Locations and human-system 
interaction and decision behaviours can subsequently readily 
be incorporated into a HMM. A Bayesian Network Classifiers 
allows in addition to predict a customer’s interaction and 
decision behaviours. Thus also his preference schemes 
concerning his desired commuter-assistant system service, 
e.g. the preferred hierarchy of presented commuting 
alternatives given a traffic jam and a business schedule of the 
sales manager, can be distilled.  

The network contexts grounded by above-mentioned 
engineering techniques can form inputs for a model of 
Propositional Logic of Context (PLC) [3] that maps each 
context sequence into a set of partial truth assignments. Such 
a PLC can in turn be embedded in Local Models Semantics / 
MultiContext Systems (LMS / MCS).  

3.3 Context representation 

Knowledge representation is at the heart of the modern 
research in artificial intelligence (AI [e.g. 19]). Its principles 
and techniques are applicable to contextual reasoning 
problems related to mobile services. Knowledge 
representation schemes capture namely essential features of a 
problem domain and make that information accessible to a 
problem-solving procedure. In addition knowledge 
representation languages help humans to understand the 
problem-solving procedure.  

A major problem in network modelling is handling 
complexity. A proven method coping with this is data 
abstraction consistent with the network model [4]: the 
representation of only that information needed for a given 
contextualisation purpose should be retained at a certain level 
of aggregation. An AI representation language must support 



 

such more human-like qualitative problem solving (rather 
than quantitative), reasoning (rather than calculation) and 
organising large and varied amounts of knowledge (rather 
than implementing a single well-defined algorithm). 

In order to cope with qualitative reasoning the bindings 
of variable names, objects and values should be handled in a 
highly dynamic fashion. E.g. adaptive (learning) systems 
taking advantage of above network models have a good 
ability for generalisation allowing them to correctly apply 
learned knowledge to novel situations.  

Typically, representing a problem domain requires a 
large amount of highly structured interrelated knowledge. E.g. 
not only components of an object (like human and car), but 
also their interrelation and combined parts should be 
described. Taxonomic information and semantic relationships 
are required. Ontologies are ways to capture both meaning 
and relationships: an ontology is a formal specification of a 
conceptualization [10] where concepts are distinguished by 
axioms and definitions stated in a logic. Therefore an 
ontology is somewhat similar to a thesaurus, dictionary or 
glossary, yet with much greater detail and structure that 
enable computers to process its content. By establishing a 
common vocabulary among applications, ontologies support 
the sharing and reuse of formally represented knowledge. 
Ontologies can be categorized by scope as exemplified by the 
layered architecture of ontologies developed within the IST-
Project WonderWeb, see Figure 1. Ontologies at lower layers 
provide representation requirements for the higher layers, 
whereas ontologies at the upper layers provide design 
guidelines to the lower layers. They are typically 
distinguished as so-called foundational, core ontologies and 
application specific ontologies.: 

• Foundational Ontologies: contain high-level 
domain-independent concepts (broad coverage),  

• Core Ontologies: provide domain-specific 
infrastructure (medium coverage), 

• Application Ontologies: relate concepts and 
properties in domain of interest (small coverage). 

Foundational ontologies together with the more abstract parts 
of core ontologies are sometimes referred to as upper 
ontologies. 

By providing repositories of standardised knowledge 
representation primitives, upper ontologies foster the 
semantic interoperability in distributed information systems. 
Additionally, the aligning to upper ontologies can provide a 
solid underpinning to application ontologies and may help to 
exclude terminological and conceptual ambiguities resulting 
from unintended interpretations. Last but not least the 
principles and engineering methods of sections 3.1 and 3.2 
clearly make operational and ground a robust representation 
of such ontologies [4]. 

A higher-level notion of structure (beyond just using 
collections of predicates or similar formalisms) helps to deal 
with complex concepts in a coherent fashion. Semantic 
networks are suitable for such. Here, an algorithm for 
reasoning about the domain in question can make relevant 
associations simply by following the links in the network. In 
addition links can indicate class memberships that allow 
properties attached to a class description to be inherited by all 
members of the class. Again the engineering methods of 

section 3.2 make operational and ground robust semantic 
networks  [4]. 

The notion of context is widely studied in different 
areas of AI. More on the work of formalisation of context in 
AI can be found in [11,12] and on contextual reasoning in 
multi-context systems in [13]. Examples of contextual 
reasoning with regard to the integration of heterogeneous 
knowledge and databases can be found in [14,15,16].  
 

Figure 1. Ontology structuring. 

3.4 Reasoning methods 

Contextual reasoning serves a selection and decision 
making process concerning which applications and services to 
offer or to provide a network entity given a particular 
situational context. The basis of any contextual reasoning 
method in pervasive computing is a network model (see also 
section 3.2) that describes and predicts the states and 
dynamics of all past, existing and future network entities.  
Such a model actually defines the reasoning methods that are 
applicable. Furthermore, it defines also possible contexts 
along which or to which those reasoning methods may be 
subjected.  

Logically well-founded ontologies do not only offer ways 
for describing a domain of interest (see section 3.3), but also 
allow to reason about the represented information. Ontology 
reasoning in terms of domain specific conceptualization 
requires logic-based inference systems that have been well 
studied within the field of knowledge representation in the AI 
community in the past. Description Logics (DLs) as a 
decidable fragment of first-order predicate logic turned out to 
be an adequate formalism for representing and reasoning 
about expressive ontologies [17]. DLs form the formal 
foundation of W3C's Web Ontology Language (OWL) [18]. 

In simple words, contextual reasoning is about 
interpreting a specific issue in a complex network given 
particular contextual constraints, e.g. which transportation 
means to choose and suggest given the schedule and 
preferences of sales manager Ferdinand. Such a reasoning 
process may yield an instance of a key element needed in a 
further selection or decision process, e.g. when the taxi is 
suddenly delayed. Such a key element may in turn be 
expressed in terms of a grounded upper-contextual reasoning 
serving selection and decision making about related issues.  

In the interpretation process, use can be made of various 
reasoning techniques (e.g. rule-based systems, model-based 
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reasoning, case-based reasoning, see e.g. [19]) and knowledge 
bases (containing both general knowledge as well as case-
specific information) that are consistent with a particular 
network model. For example in a rule-based system, this 
knowledge is represented in the form of if… then… rules. The 
inference engine is essentially an interpreter for the 
knowledge base; it applies the knowledge to actual problems. 
Reasoning can deal with partial context information such that 
implicit information can be inferred. Typically the upper 
context ontology uses standard vocabulary, like OWL, and is 
supported by of the shelf reasoning components like RACER 
[20] (see section 4). 

Reasoning allows entailed (or “new”) knowledge to be 
inferred from a set of facts and rules. Essential to any 
intelligent entity is the ability to derive additional knowledge 
from a world description. It is impossible to store an 
inflexible description of every possible situation, hence 
abstract descriptions of classes of objects and situations (see 
section 3.3) are used to formulate and reason about. For 
example, the rule “for all X, X is clear if there does not exist a 
Y such that Y is on X” allows the system to infer - from given 
facts - whether or not there is something on top of another 
object. The variables make the intelligent system as general as 
possible. 

The ability to learn from examples, experiences, or high-
level instructions (instead of being hard-coded) depends on 
the application of meta-knowledge. Meta-knowledge is about 
“knowing about what you know”. E.g. an intelligent system 
should not only know things but also should know what it 
knows. It should be able not only to solve problems but also 
to explain how it solved the problems and why it made certain 
decisions. It should recognize the limitations of its knowledge 
and learn from its interactions with the world.  

The commonsense human approach to problem solving 
supports the hypothesis that exploring alternative choices 
solves NP (Nondeterministically Polynomial) problems. This 
problem-solving approach underlies the state space search 
technique. This technique provides a means for automating 
intelligent or heuristic strategies for selectively exploring the 
problem-solution space. Here intelligence and heuristics 
guide the search along lines that have a high probability of 
success while avoiding wasted or apparently stupid efforts.  
A state space may be searched in two ways: either from the 
given data of a problem instance toward a goal (‘data-driven’) 
or from a goal back to the data (goal-driven’). Data-driven 
search is also referred to as forward chaining; goal-driven as 
backward chaining. In forward chaining you start with the 
given facts of the problem and a set of rules for changing 
state. Search proceeds by applying rules to facts to produce 
new facts, until a satisfactory goal condition (“relevant 
context information”) is reached. In backward chaining one 
starts with the goal and considers the rules that could be used 
to generate that goal and tries to determine what conditions 
must be true to use them. These conditions become then the 
new goal for search, until the working backwards ends at the 
fact of the problem. Again the engineering methods of section 
3.2 can make operational and ground data-driven and goal-
driven searches [4]. 

Applied to our commuter-assistant scenario: The 
inference and hierarchical ordering mechanisms are the most 
crucial from a contextual reasoning perspective. The former 
and the collection mechanisms are initiated by the secretary-
commuter system whenever inconsistencies occur between 
the actual travel scheme of the sales manager and those of the 
travel service providers. For the Travel Preference Scheme 
Provider a dynamic user profiling management system is 
indispensable. It may do history management and apply 
several engineering methods about past travel service 
interactions and decisions of the sales manager. This allows to 
distil grounded and ordered travel schemes related to time, 
locations, inconsistencies between actual travel schedule of 
the sales manager and those of the travel service assistants 
and business meeting schedules [6]. Furthermore, it allows 
the commuter-assistant on the basis of the above contexts to 
infer and to display at run-time this preferred order of travel 
alternatives by a concatenation of event condition action 
rules. In order to apply those context-dependent rules several 
technologies exist, which are surveyed in the next section. 
 

4. ENABLING TECHNOLOGIES 
Machine languages, reasoning engines and tools can 

help to support contextual reasoning on categorisations of 
various networks. They can provide mechanisms to represent 
data, applications and services, and enable to reason on data 
by applications or services. In our commuter-assistant 
scenario such enabling technologies can help contextualize 
the travel services on the basis of the business schedules and 
the preferences of the sales manager.  

4.1 Machine languages 

To reason on context by means of machines, it 
should be defined in some formal language that can be parsed 
by an automaton. Many of such machine languages have been 
proposed for intuitively representing concepts like business 
schedules, preferences and travel services in expert systems, 
planning systems, knowledge management systems, etc. 
Formal logics and languages provide a more or less natural 
translation of those concepts into objects or agents of a related 
computational model.  

Nowadays, there exist several languages that can 
handle both exchanging objects across the World Wide Web, 
as well as dealing with cooperation among heterogeneous 
agents. Examples of these are Knowledge Interchange Format 
(KIF) [21], Open Knowledge Base Connectivity (OKBC) 
[22], XML-based Ontology exchange Language (XOL) [23], 
Resource Description Framework (RDF) with RDF data 
query language (RDQL  [24]), Darpa Agent Markup 
Language (DAML) plus Ontology Inference Layer (OIL) 
(DAML + OIL) and Web Ontology Language (OWL), see 
also Figure 2. 

KIF was one of the first knowledge representation 
languages. It enables the interchange of knowledge among 
disparate programs.  

 



 

OKBC is a frame-based language. It provides a uniform 
model of Knowledge Representation Systems (KRSs) 
supporting networked as well as direct access to knowledge 
bases. The Foundation of Intelligent Physical Agents (FIPA) 
uses the OKBC representation.  

XOL enables the exchange of ontology definitions 
among different systems like database systems, ontology 
development tools or application programs. 

RDF provides a lightweight ontology system to support 
the exchange of knowledge on the Web. It can be used to for 
instance to describe statements like “Ferdinand … late for his 
train connection”. Key element of this approach is the relation 
(called ‘predicate’) between concepts that can be traversed to 
reason on concepts (e.g. context “This morning he has an 
appointment with some customers for a major business deal 
and he does not want to come late.”). RDQL enables 
specification of queries to retrieve certain concepts, e.g. 
preferences and travel services, from an ontology given a 
particular context.  

 

 
Figure 2. Language extensions and dependency between data models, logical 

paradigms and standards. 

 
DAML + OIL is a joint standard for specifying and 

exchanging ontologies. Its definition is based on existing 
frame-based language such as OKBC, XOL RDF and RDF 
Schema with richer modelling primitives.  

OWL is a W3C standard for ontology and metadata 
representation that facilitates machine interpretability of Web 
content and enables applications processing this content. It is 
based on DAML+OIL, XML and RDF/RDF-S. OWL is 
defined as three sublanguages: OWL Lite, OWL DL and 
OWL Full with a growing level of expressiveness and 
complexity. Choosing between them is based on one’s 
requirements in engineering ontologies. Generally speaking, 
the design decision treats the trade-off between the 
expressiveness of OWL versus an efficient OWL reasoning 
support. OWL Lite and OWL DL represent the decidable 
fragment of OWL with good tool and complete reasoning 
support. 

Currently OWL is becoming the standard for specifying 
metadata. Advantages of OWL-DL are its expressivity, 
monotonicity, and decidability. Disadvantages are its 
language complexity and lack of support for property 

chaining and it does not allow for procedural attachments. It 
has however, good tool support and enables us to reason on 
concepts by traversing relationships. Therefore, for our 
scenario, OWL-DL is the most feasible specification language 
to use and in our limited scenario we might even suffice for 
OWL-lite.  

4.2 Reasoning engines 

An individual expert system applies its inference engine 
to a database of knowledge in search for solutions to a given 
problem. Distributed knowledge management systems rely on 
the co-operative capabilities of various individual expert 
systems to solve more complex problems. In our scenario, 
one can readily imagine that contextual reasoning and 
cooperation is needed whenever the sales manager is abroad 
and still using his commuter-assistant service e.g. to go to a 
conference. Having an appropriate meta-ontology available 
that relates the different ontologies across the globe, 
reasoning systems can make appropriate decisions to adapt or 
activate an application or service on the basis of an observed 
context all represented in the ontology at hand. These 
reasoning systems can be rule-based, constraint-based or 
probabilistic.  

Rule-based reasoning engines can use Prolog [19], a 
subset of first order logic, as a logic language to define rules. 
For example, open source and Java-based JTP [25] provides 
besides a hybrid reasoning system architecture also a 
reasoning system component library that enable rapid 
building, specializing, and extending of (backward-chaining 
and forward chaining) reasoners based on such rules.  Each 
reasoner in a JTP hybrid reasoning system can embody 
special-purpose algorithms and maintain JTP system's 
knowledge. Another example is Jess (Java Expert System 
Shell) [26] that supports the development of rule-based 
systems, which can be tightly coupled to code written in the 
Java language. 

Constraint-based reasoning engines use the inherent 
constraints in a problem to rule out impossible alternatives 
before and during the search for a solution [27]. They are in 
particular valuable in our scenario in which the system is 
simultaneously confronted with several scheduling, planning, 
resource allocation and routing problems. There exists a 
complete environment for the design and development of 
such decision support systems called ChiP [28]. 

The choice for every component (e.g. reasoning engine) 
in the reasoning process depends heavily on the choice of 
machine languages. As we chose for OWL as machine 
language the other components should comply with this 
language. E.g. in [29] an implementation of a context aware 
application is done by using OWL, in combination with 
RACER and JESS. 

4.3 Tools 

Several OWL tools exist such as API’s/parsers like Jena 
[30], OWL API [31] and OWLP[32], and graphical OWL 
editors of ontologies, like Protégé [33] and SWOOP [34]. 
Another tool is KAON [35] that enables ontology creation 
and management. It provides a framework for building 

e.g. KIF, KBC



 

applications that require scalable and efficient ontology-based 
reasoning. RACER [20] provides a description logic based 
reasoner for managing and reasoning about ontologies. It is 
OWL-compatible and has semantic middleware for proof 
checking, ontology validation and classification.  

For rapid development of context aware mobile services 
there exist the Context Broker Architecture (CoBrA) [36] or 
SOUPA [37], and GAIA [38] infrastructure. Making use of 
our context categorizations, contextual reasoning methods 
and appropriate ontology they could help realizing our 
scenario very quickly. 

CoBrA is an agent-based architecture for supporting 
context aware systems. Central is a context broker who 
maintains a shared network model, ontology and a common 
policy language on behalf of a network of agents (being SW 
agents, context providers, context brokers, context aware 
service providers, users and customers), applications, 
services, communication and computational networks, and 
devices. The CoBrA and SOUPA ontology are both designed 
to model and to support pervasive computing context aware 
applications and services and are OWL compliant. The 
extensible CoBrA model can represent, manipulate and access 
context information for the purpose of context aware service 
provisioning like in our scenario. First-order probabilistic 
logic, high-order logic and Bayesian network methods can be 
applied for further reasoning about various context 
information important for both controlling and regulating 
attentively and proactively existing and novel context aware 
services. 

GAIA is a CORBA-based development infrastructure for 
building interacting autonomous agents. It provides event, 
presence, discovery and naming services to agents. With 
increasing network complexity there is a high need for ways 
of sustaining robust service discovery, matchmaking, 
interoperability and context awareness of agents. A GAIA 
compatible ontology has been developed for just that purpose 
[39]. It can sustain - despite the rise in complexity of even the 
overall network dynamics - descriptions of agents and their 
relations, rules or policies for agents and their relations, and 
the different types of contextual information. This way GAIA 
can augment configuration management, discovery and 
matchmaking, HCI, interoperability and context aware 
services. Thereto, GAIA ensures that the Ontology Server 
maintains the ontology. For checking logically consistency of 
the ontological concepts, logical retrieval and (context) 
reasoning about the autonomous agents the CORBA FaCT 
Reasoning Engine is used. For dynamic discovery purposes 
the Ontology Server registers regularly with the CORBA 
Naming Service.   

 

5. REALISATION AND EXPERIENCE 

To demonstrate the concepts and techniques for 
context reasoning that are outlined in this paper, we have built 
a demonstrator that implements the first part of the scenario 
mentioned in section 2, namely that part of the scenario where 
the commuter is notified of the fact that he has just missed his 
train. Even such a simple notification requires substantial 

intelligence in gathering relevant context information and 
reasoning about that information. Due to the fact that 
information, such as the train is leaving now, is probably not 
available directly, it has to be obtained from other indirect 
sources. 

The commuter in our scenario has a number of location 
providers at his disposal that are all wrapped as a semantic 
web service that relates local concepts to a central and widely 
accepted ontology. All these location providers can be 
discovered, and advertise their interface description as well as 
other relevant parameters like costs, accuracy et cetera. We 
have implemented a number of example context wrappers 
(compare the functional view [40] in Figure 3), including: 
• GSM GPS location wrapper, which is a wrapper around a 

Bluetooth-enabled GPS receiver connected to a Symbian 
7 phone. It delivers location information. 

• GSM Cell ID wrapper, which offers information on the 
GSM cell in which a Symbian 7 phone is currently 
located. Together with a GSM cell to location converter 
this could be used as a source of location information as 
well. 

• Messenger wrapper, which connects to Windows 
Messenger and delivers information on the status of a 
user on a PC or laptop. 

• Outlook wrapper, which connects to Microsoft Outlook. 
It can give information on the scheduled activities of a 
user and the location of those activities. 

 
 

Figure 3. Functional view of context sources: various context-based reasoners 
and wrappers all deliver context information and inference rules can be 

defined at the reasonerInterface.  

 
 
These wrappers hide platform- and device specific 

details from the generic infrastructure. Amongst the wrappers 
above are three that can act as a source of location 
information, in various forms, that we use for our reasoning 
validation case on the commuter-assistant scenario.  

One of the platform specific components allows 
Symbian 7 phones to advertise an ‘Awareness 
ContextProvider’ service to the outside world, see the 
screenshot in Figure 4. This means that software running on 
another Bluetooth enabled device can scan for devices that 
offer this service. They can then connect and (if allowed by 
the owner of the device) retrieve context information from 
that device in a peer-to-peer fashion. 
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Depending on the user profile and the current task, a 

relevant location provider is selected from a hierarchy of such 
providers to obtain location information. For example, the 
user profile indicates that costs should be minimal. The result 
is that the context manager uses the GPS Location Provider 
when the commuter is walking towards the station, but 
switches to the P2P Location Provider when the GPS looses 
its fix. When that does not result in a viable location, it 
switches to the Local Location Provider (which might cost 
some money, see the discussion in section 2) and it uses the 
Network Location Provider as a backup if everything else 
fails.  
 In Figure 5, we display a specific constellation of a 
set of context providers and reasoners to deliver this event 
information (train has left) irrespective of the communication 
channel (in the example: GPRS or Wi-Fi). With the help of a 
context reasoner it becomes possible to switch from a GPRS 
location provider (cell-ID based) to a local location provider 
(using the Wi-Fi hotspot’s MAC address as input), when the 
user is roaming seamlessly from GPRS to Wi-Fi, and vice 
versa. This is done by using a context reasoner component 
that monitors a third context provider for changes in the type 
of network used by the end-user. Upon such a change, it 
switches seamlessly to another location provider. 
 

Figure 6 and Figure 7 show screenshots taken from 
the mobile terminal showing the situations of detection of a 
access network change by the communication monitor. It 
alerts the commuter reasoner, which in turn changes the 
location providers with the result being that Ferdinand also 
has location information while being inside the station 
building. Moreover, this location information is provided on 
the lowest costs possible due to his user preference setting.  
The commuter reasoner also has access to other context 
providers, including one that wraps the commuter’s schedule. 
With that information it uses an external service provider, in 
this case a public transport planner, to plan Ferdinand’s 
optimal travel schedule. As a next step, the context reasoning 
comes into play. We use a rule-based system for reasoning, 

with an OWL ontology as knowledge base. From the travel 
schedule (that is accepted by the commuter), his location and 
the current time, it derives the fact that the commuter is bound 
for a certain train. This can be expressed as a rule at the 
commuter reasoner interface (compare Figure 3 [40]). The 
rule being “if user is moving in the direction of the scheduled 
location of a transport vehicle mentioned in his travel 
schedule in the assigned time slot, he is bound for that 
vehicle”. The context of bound-to is described in the OWL 
ontology. When that rule is evaluated positively, an event 
triggers the process that starts the monitoring of the particular 
transport vehicle. 
 

 
Figure 5. A specific example of a provider-reasoner constellation to deliver a 
notification that his train has left, based on location information of a group of 

users with the same destination. 

 
 

The monitoring of this vehicle (in this case the train) 
could be as easy as setting a trigger in a central service 
offered by the railroad company upon the departure of a 
particular train. In most countries, such a service does not 
exist, but fortunately there are alternatives in case based 
reasoning. This method uses the group of users of the same 
system that are also bound for the same train. Their collective 
location information can be used – in an anonimized way - to 
infer that the train has left [41]. This can also be formulated in 
a rule based reasoning system: if the locations of a substantial 
subset of the group of users bound for a train match, that 
matching location is the location of the train. And if the 
location of the train moves away from the departure station, 
the train has left. And if the train has left without the 
commuter, he gets a notification of that very fact. Inclusion of 
such system dynamics as the behaviour and situation of others 
bound for the same train is our next goal in implementation. 
This extends on the state-space search, which we know is not 
sufficient for our goal, since we need rather a characterization 
of system dynamics [4]. Further we will extend the validation 
of our designed reasoner components, including the 
ambiguity resolver with multiple location providers 
 



 

 
 

 
Figure 6. The initial situation: Ferdinand is outside the station IP-connected 
via GPRS; the location provider is the GPRS network-operator (based on 

cell-ID). 

 

 
Figure 7. The situation after Ferdinand entered the train-station, coverage 
area of a public Wi-Fi hotspot. A seamless handover has taken place from 

GPRS to Wi-Fi, and based on that (network) context information the context 
reasoner has decided to switch from location provider as well. 

 

6. CONCLUSIONS 

In this paper, we described context-based reasoning – 
from principles and methods, needed grounding and 
representation means to existing tool, ontologies, and 
languages support. We analysed a commuter-assistant 
scenario with respect to the context provisioning and 
reasoning required and reported on our first validation 
findings. Our context-reasoning components are designed in a 
generic architecture for context processing entities, managed 
by a context provider. The different sources of context 
information, being various reasoners and wrappers, support 
intelligent processing of context information. Several location 
sources are wrapped as semantic web services, provider 
advertisements are realised and intelligent provider-reasoner 
constellation is implemented enabling optimal location 
provider selection allowing for further optimal location 
interpretation. This enables the first part of our scenario: 
notifying the commuter that he has missed his train. Our 
future work is dedicated to a further implementation of 
reasoning components that enable aligning commuting and 
meeting preference schemes. It includes an ambiguity 
resolving component, capable of solving multiple, possibly 
contradicting location objects.  
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