
Context-aware, ontology-based, service discovery

Tom Broens1,2, Stanislav Pokraev1
, Marten van Sinderen2, Johan Koolwaaij1, Patri-

cia Dockhorn Costa2

1 Telematica Instituut, P.O. Box 589,
7500 AN Enschede, The Netherlands

{Tom.Broens, Stanislav.Pokraev, Johan.Koolwaaij}@telin.nl
http://www.telin.nl/

2 Center for Telematics and Information Technology,
University of Twente, P.O. Box 217
7500 AE Enschede, The Netherlands

{t.h.f.broens, m.j.vansinderen, p.dockhorncosta}@ewi.utwente.nl
http://www.ctit.utwente.nl/

Abstract. Service discovery is a process of locating, or discovering, one or
more documents, that describe a particular service. Most of the current service
discovery approaches perform syntactic matching, that is, they retrieve services
descriptions that contain particular keywords from the user’s query. This often
leads to poor discovery results, because the keywords in the query can be se-
mantically similar but syntactically different, or syntactically similar but seman-
tically different from the terms in a service description. Another drawback of
the existing service discovery mechanisms is that the query-service matching
score is calculated taking into account only the keywords from the user’s query
and the terms in the service descriptions. Thus, regardless of the context of the
service user and the context of the services providers, the same list of results is
returned in response to a particular query. This paper presents a novel approach
for service discovery that uses ontologies to capture the semantics of the user’s
query, of the services and of the contextual information that is considered rele-
vant in the matching process.

1 Introduction

Ambient intelligence aims at enriching users' lives by providing ubiquitous, transpar-
ent and intelligent electronic services [1]. These services are diverse and distributed in
the user's environment.

A key feature of ambient intelligence is transparency on service provisioning. The
process of discovering and invoking relevant services should be hidden from the users'
point of view. In order to realize this scenario, we need mechanisms to provide smart
service discovery based on the current situation of the user (e.g., user's location, his
interest, user's environment characteristics, etc). We define the user's current situation
as context [9]. Contextual information of the user is therefore an essential aspect to

accomplish transparency in the service discovery process within the ambient intelli-
gence scenario.

Most of the existing service discovery mechanisms retrieve services descriptions
that contain particular keywords from the user’s query. In the majority of the cases this
leads to low recall1 and low precision2 of the retrieved results. The reason for the first
is that query keywords might be semantically similar but syntactically different from
the terms in service descriptions, e.g. ‘buy’ and ‘purchase’ (synonyms). The reason for
the second is that the query keywords might be syntactically equivalent but semanti-
cally different from the terms in the service description, e.g. ‘order’ in the sense of
proper arrangement and ‘order’ in the sense of a commercial document used to request
supply of something (homonyms). Another problem with keyword-based service dis-
covery approaches is that they cannot completely capture the semantics of user’s
query because they do not consider the relations between the keywords. One possible
solution for this problem is to use ontology-based retrieval. In this approach, ontolo-
gies are used for classification of the services based on their properties. This enables
retrieval based on service types rather than keywords.

Another drawback of the existing service discovery approaches is that the query-
service matching score is calculated taking into account only the keywords from the
user’s query and the terms in the service descriptions. Thus, regardless of the context
of the user and the context of the service providers, the same list of results is returned
in response to a query. By definition, context is a situation of an entity (person, place
or object) that is relevant to the interaction between a user and an application [9].
Therefore, considering the context in the query-service matching process can improve
the quality of the retrieved results. However, contextual information is highly interre-
lated and has many alternative representations [27] that makes it difficult to interpret
and use. One possible solution is again to use ontologies to specify the interrelations
among context entities and ensure common, unambiguous representation of these
entities.

This paper presents a novel approach for service discovery that uses ontologies to
capture the semantics of the user’s query, of the services and of the contextual infor-
mation that is considered relevant in the matching process. The paper is based on a
master thesis [6] that can be used as further reading.

The paper is structured as follows: section 2 presents the existing service discovery
approaches and their major drawbacks. Section 3 presents our service discovery ap-
proach. Section 4 discusses the implementation and evaluation of the proposed ap-
proach and section 5 summarizes our contributions.

1 recall – a standard measure of information retrieval performance, defined as the number of relevant items

retrieved divided by the total number of relevant items in the collection. The highest value of recall is
achieved when all relevant items are retrieved

2 precision – a standard measure of information retrieval performance, defined as the number of relevant
items retrieved divided by the total number of items retrieved. The highest value of precision is achieved
when only relevant items are retrieved

2 Existing service discovery approaches

2.1 Traditional service discovery

CORBA [24] proposed one of the first service discovery approaches. It specifies nam-
ing [23] and trading services [22] used to discover objects on a network. The naming
service is keyword-based whereas the trading service supports discovery based on the
service types. UDDI [29] is the most used service discovery approach for web ser-
vices [3]. The core of the UDDI architecture is a central business registry that func-
tions as a naming and directory service. Services in this registry are described from
three different perspectives, comparable to the white, yellow and green pages of the
telephone dictionary. Furthermore, service descriptions consist of tModels that clas-
sify the business or web service using standard or user-defined taxonomies. OSGi [25]
proposes an open service platform for the delivery of applications and services to all
types of networked devices. Service discovery is performed by querying the name or
the type of a service. OSGa [14] focuses on integration of grid computing paradigms
with web services technologies. The service is advertises by its service information
(i.e. name, type) in the registry. By retrieving this service information, the user can
discover services.

Klein [19] discusses several categories of service discovery technologies and their
limitations for the quality of the service discovery result. According to Klein’s catego-
ries, the traditional service discovery approaches are either keywords-based or table-
based and they don’t take into account the contextual information. As discussed in the
introduction this leads to low quality of the retrieved results.

2.2 Context-aware service discovery

 This section presents the existing approaches that consider the contextual informa-
tion in the service discovery process. It also discusses the problems of using contex-
tual information in those approaches.

The Cooltown [15] project allows users to discover services that are in the user’s
vicinity. In this approach the location of the user and the service is used to derive that
the user is in the service area. This way, services that are close to the user are returned
by the service discovery mechanism. The context toolkit [8] is a development toolkit
that provides functionality to discover services using contextual information. It allows
for describing services by means of white and yellow pages that include contextual
information. The platform for adaptive applications [10] proposes architecture for
applications that adapt their behavior according to the context of the user. The plat-
form enables discovery of context providers by the type of context they advertise. This
contextual information is used to adapt the application behavior. The CB-Sec project
[20] provides functionality to discover services that are in the vicinity of the user. This
approach takes into account the user and service capabilities in the service discovery
process.

The contextual information is highly interrelated and has many alternative repre-
sentations [27]. This makes it difficult to interpret and use. Context providers and
context consumers (e.g. service providers or requestor) may have different under-
standings of the same contextual information. This leads to misinterpretation of the
information, which in turn leads to misunderstanding of the user goal and therefore
poor discovery results.

2.3 Ontology-based service discovery

As we said earlier, shared understanding on the concepts, used to describe services
and contextual information, is crucial to ensure high quality service discovery results.
The required, shared understanding can be provided by the use of ontologies [11].
There are several approaches that use ontologies in the service discovery process.
However, none of them considers the use of contextual information in the service
discovery process.

OWL-S [29] is an OWL [31] service ontology that can be used to semantically de-
scribe services. It allows specification of services in terms of their inputs, outputs,
conditions, that have to hold true before the service execution (called preconditions in
OWL-S terms), and post-conditions, that represent the state of the environment after
the service execution (called effect in OWL-S terms). COBRA [7] divides the world
into different application domains. Each domain is specified by its own ontology that
provides shared concepts and relations for service discovery. OntoMat [2] uses on-
tologies to map the concepts used by the service requestor to the concepts used by the
service provider. This way, those concepts can be compared and reasoned about.
CBSDP [18] is a service discovery protocol for ad hoc networks. CBSDP uses ontolo-
gies to interpret the data exchanged during service execution.

3 Our approach

We argue that the use of contextual information in the service discovery process in-
creases the recall and precision of the retrieved results. On the one hand, the contex-
tual information makes the user’s query more information-rich and thereby provides
means for higher precision of the retrieved results, that is, the context helps to capture
better the user’s goal. On the other hand, the contextual information can serve as an
implicit input to a service that is not explicitly provided by the user. This prevents
filtering out the services that require this input from the user, which leads to higher
recall of the retrieved results. However, as discussed in 2.2., contextual information is
very complex and has many alternative representations. Therefore, we propose to use
ontologies to model such information. The use of ontologies for describing users’
queries, service properties and contextual information is advantageous. First, ontolo-
gies provide a vocabulary for modeling knowledge in a restricted domain. They are
built by reaching a consensus within a community of interest and thus are a key en-
abler for seamless knowledge interchange. Second, ontology languages are usually
grounded with formal semantics such as model theory or description logic. This in

turn enables unambiguous definitions of compound concepts. Based on these defini-
tions it is possible to infer new implicit information from present (explicit) informa-
tion. Finally, the common vocabulary and precise mathematical specification of se-
mantics open the way to automatic information processing since the information is not
only understood by humans but also by machines.

3.1 Positioning

Figure 1 shows the position of our approach with respect to the existing service re-
trieval approaches identified by Klein in [19].

We position our approach in the space between
the concept-based approach and deductive retrieval
approach. The deductive approach offers higher
recall and precision, however, modeling service
functionality by the means of formal logic is some-
times an extremely difficult task. Another disadvan-
tage of the deductive approach is that the search
process is usually very slow due to the high computa-
tion complexity of the proof process.

3.2 Overview

In our approach, we distinguish several high-level components (fig. 2). The inputs of
our matching component are: the user’s query (i.e. the service request), a set of adver-
tised services (i.e. service descriptions), a set of context providers, and the ontologies,
used by the user, service and context providers.

In our approach service users,
service providers and context
providers achieve a shared under-
standing by using ontologies to
which they all commit. Users and
service providers have associated
context providers that can deliver
different types of contextual in-
formation, for instance, user loca-
tion or weather conditions in a
certain service area. To enable
unambiguous, knowledge inter-

change, our approach uses domain-specific ontologies. In such ontologies, concepts
from a particular domain and relations among them are precisely specified. This en-
ables reasoning on the user queries, service descriptions and associated contextual
information. For instance, consider a shop that advertises: sale of ‘music products’. If

Fig. 1. Positioning of our approach

Fig. 2. High-level overview

�������

�����	
��

�	������ �
��
��

���	����
��	��

�����
��

��	�����
�������

������
�	

����
��

���	��	��	

�

�

� �

�������
���	

�

���	

���
���	

����
��

��	��	

���
���	

���������	
�� �����	
��

	!��

���
���	

a user specifies that he wants to buy a ‘music CD’, the query and the service descrip-
tion do not match syntactically. If we employ domain-specific ontologies to derive that
‘music CD’ is a ‘music product’, we can conclude that the query and the service de-
scription match semantically.

We distinguish four different service properties that are handled differently by our
matching algorithm:

� Service type: Refers to an entry in some ontology or taxonomy of services. Ex-
ample of such an ontology is the UNSPSC3 classification system.
� Outputs: Refers to a concept from a domain-specific ontology that specifies the
value that this particular service delivers to its environment (e.g. music products,
traffic information, etc.)
� Inputs: Refers to a concept from a domain-specific ontology that specifies the
sacrifice a user is ready to make in order to receive the value delivered by a service
(e.g. money, effort to fill in a questionnaire, etc.)
� Contextual attribute: Represent the contextual information derived from the
user (e.g. user location) and service providers (e.g. service location).

3.2 Service grounding

To be able to invoke a service after its discovery, in our approach we use a WSDL
grounding mechanism. WSDL [32] defines services as collections of network end-
points. The abstract definition of an endpoint, called interface, is separated from its
concrete network deployment, protocol and data encoding through reusable bindings.

Interfaces are ab-
stract collections of
operations that
contain input
and/or output mes-
sages which consist
of message parts.
Fig. 3 presents the
mapping between
our service model
and the WSDL
metamodel. In our
service model each

service has a service type. This service type is mapped to a WSDL interface. The
service itself maps to an operation in this interface (e.g. SellMusicCD). The inputs and
outputs of the service map to messages in WSDL whereas concepts map to message
parts. The following example outlines our grounding mechanism.

...
<operation name="SellMusicCD">
 <input message="credit_card"/>

<output message="CD" />

3 http://www.un-spsc.org

Fig. 3. Service model and mapping to the WSDL metamodel

</operation>
<message name="credit_card">
 <part name="type" payontology:output="payontology :#CreditCardType" />
 <part name="card" payontology:output=" payontolog y:#Card"/>
 <part name="expire" payontology:output=" payontol ogy:#ExpireDate" />
</message>
...

3.3 Matching algorithm

Our approach matches a user query with a set of available service descriptions. The
result is a set of service descriptions that semantically match the user query. To rate
the matches we defined a quality measure called matching degree.

Matching degree

Consider a user request R and a service description S. To rate how relevant particu-
lar match between R and S is, we use the number of service properties (i.e. type, in-
puts, outputs and contextual attributes) from the request that are not present in S.
Based on those missing properties we classify the match in five different categories,
defined by Li [21] (fig. 4).

The first category indicates an exact match. The request has the same properties as
the service description, i.e. there are no missing
properties. This is the best possible match. The sec-
ond category is called plug-in match, that represents
the second best match. It indicates that the service is
capable of more than the requestor wants. The third
and fourth category, called subsume match and in-
tersection match, respectively, indicate that the ser-
vice can only partially provide what the user wants,
i.e. the number of missing properties is bigger than
zero. The fifth match category indicates a disjoint
match, i.e. the request and the service do not share
any properties.

Our approach uses this initial classification to further classify matches in three
types of matches that are useful for the user:

� Precise match: Exact and Plug-in matches. The service is capable of providing
the requested functionality or more.
� Approximate match: Subsume and intersection matches. The service is capable
of providing part of the requested functionality.
� Mismatch: Disjoint match. The service is not capable of providing the re-
quested functionality and will not be returned to the user.

Algorithm
The goal of the matching algorithm is to classify the available set of services using

the service request into the three previously defined matching types. This is done in
four steps (fig. 5).

Fig. 4. Match categories

The starting point of the
matching process is a set of all
service (S) available to the
matchmaker (e.g. n). The first
step will filter out those ser-
vices that are not of the desired
service type provided in the
user request (R). This results in
a smaller set of services (e.g. n-

k) with service type Rt. The second step will filter out all service descriptions that do
not have the desired service output. Again, this results in a smaller set of services (e.g.
n-k-m) that can provide the requested output Ro. The services of this set are then que-
ried for the inputs (si) they require. If the required inputs are provided by the user or
can be provided by the context providers (e.g. when the service needs as input the user
location that is not provided by the user but by the user location context provider) the
match is classified as perfect. Else the match is classified as imperfect. The final step
orders the two sets using the contextual attributes (discussed in the next section). All
phases are represented in the following matchmaking algorithm.

Matching(R, S) {

S’ = query_Registry(R t , S)
S’’ = query_Registry(R o, S’)
forall s in S’’ do {

 s i = query_Inputs(s)
 if provided(s i ,R i) then {
 Precise.append(s)
 }
 else {
 if query_ContextProviders(userID,
 missing_Inputs(s i , R i)) then
 {
 Precise.append(s)
 }
 else {
 Approximate.append(s)
 }
 }

}
P = order_with_ContextualAttributes(Precise)
A = order_with_ContextualAttributes(Approximate)

return result(P, A)

}

Contextual attributes model
Users can define some preferences about certain properties of a service they want

to discover. This can for instance be the preference nearby that defines that the user
wants to retrieve a service close to him. We call these service properties/user prefer-
ences “contextual attributes”. The contextual attributes are defined in a simple rule:
Attribute –definition-> Statement. The statement defines the meaning of the attribute

Fig. 5. Matching algorithm

(e.g. nearby –definition-> distance (userposition, serverposition) < maxdistance).
These contextual attributes are used to order the sets of returned matches.

We use a clustering mechanism to rate services based on the preferences they have.
For that purpose, we use concept lattices [13]. ‘Concept lattices’ is a mechanism used
in formal concept analysis. It can be used to study how objects can be hierarchically
grouped together according to their common attributes. The starting point is a concept
model which consists of a triple (G,M, I). G is set of objects, M is a set of attributes
and I is a binary relation between them (GxMI ⊆). A common used representation
of this model is a cross table (fig. 6a). Each object is one row in the table while the
attributes are the columns. The binary relation is presented by a cross at the intersec-
tion of a row and a column. The lattice table is the basis for a lattice line diagram that
visualizes the attribute communality of the objects (fig. 6b).

Fig. 6. Concept lattices

This is a hierarchical diagram which presents the most generic objects at the top
while getting down in the diagram the objects get more specific (i.e. have more attrib-
utes). A node in the diagram is called concept and can contain objects that share the
same attributes. Such a concept shares the attributes from its parents in the diagram.
The top node is a set of objects that contains no attributes. One level down object 1 is
encapsulated by a concept that contains attribute 1. Again one level down we see that
object 3 has a relation with the concept containing attribute 1 and with a concept con-
taining attribute 2. Therefore, object 3 has attribute 1 and attribute 2 and shares attrib-
ute 1 with object 1. Object 2 has attribute 3 and shares attribute 2 with object 3. The
bottom node contains objects that have all attributes (in this case empty). This model
is analogues to our contextual attribute model, where a service (object) has some con-
textual attributes (attributes) (fig. 7).

Fig. 7. Lattice cross table

The request and all retrieved services descriptions are added to this table as objects
(rows). The preferences are evaluated for the services (cross) and added as attributes
(columns). From this table a lattice line diagram is calculated (fig. 8).

This diagram should be read from the top to
the bottom. A child node shares the attributes of
its parents (e.g. service 5, service 9 and request
all have attributes nearby, train, open, price
range2 etc). So, by reasoning on the position of
services related to the position of the request an
ordering of services can be made. Services posi-
tioned higher in the diagram than the request
miss preferences. The higher the services are
positioned the more preferences they miss the
lower in the resulting list they are ordered.

4 Implementation and evaluation

Our approach was implemented as part of an experimental platform [12]. The plat-
form provides the environment for mobile context-aware application to use third party
content services (i.e. web services). The platform is implemented using Java technol-
ogy. Parlay X [26] is used to interact with 3G network services while the AXIS
framework [4] is used to interact with the third party content services. The client side
is implemented using Personal Java and runs on a variety of embedded devices (e.g.
smartphone, PDA).

Our approach is embedded in the matchmaker component of the experimental plat-
form. Service advertisements are stored in MySQL databases as persistent Jena [17]
models, and retrieved by executing RDQL [16] statements. The approach is imple-
mented modular by encapsulating it in webservices. Therefore, the approach is not
solely suitable for handling explicit requests by the user, but it is also able to deal with
implicit requests, for instance, by an ambient intelligence environment.

We evaluated the approach using the implemented prototype. One of the evalua-
tions issued queries using the prototype. Recall and precision rates where calculated
and compared to recall and precision rates when using keyword based mechanisms.
As an example, a query containing homonyms showed a gain of recall and precision of
more than fifty percent. Further reading on the evaluation can be done in the master
thesis [6].

Fig. 8. Lattice line diagram

5 Conclusion

In this paper we discuss the shortcomings of existing service discovery approaches
and propose a novel approach [6] to overcome some of them. Our approach4 uses the
available contextual information about a particular user or service provider (e.g. user
location or service opening times). In addition, it uses ontologies to semantically ex-
press user queries, service descriptions and the contextual information.

The use of contextual information in our approach resulted in higher quality of the
retrieved results. On the one hand, the contextual information makes the user’s query
more information-rich (e.g. by adding extra information about the user’s preferences)
and thereby increases the precision of the retrieved results. On the other hand, the
contextual information serves as an implicit input to a service that is not explicitly
provided by the user. This allows our matching algorithm to select services that would
be filtered out otherwise, which leads to higher recall of the retrieved results.

Besides the use of contextual information, we showed that use of ontologies in the
context-aware, service discovery has many advantages. First, ontologies provide a
shared vocabulary for specification of user queries, of service descriptions and of
contextual information. This provides a basis for matching of meaningful user queries
and meaningful service descriptions rather than just syntactic textual descriptions.
Second, we used OWL, which is grounded with formal semantics of the Description
Logic [5]. This allowed us to define unambiguously compound concepts and to reason
about them.

Finally, the use of concept lattices for clustering services with similar attributes
provided a convenient way to order services by their relevancy for the user. However,
the designed mechanism is just a first step on using concept lattices in service discov-
ery. Our future work includes a broader inspection of the use of concept lattices in
service discovery.

References

1. Aarts, E., Eggen, B., Ambient Intelligence in Homelab (2002), Philips Research
2. Agarwal, S., Handschuh1, S., Staab, S., Surfing the Service Web (2003), ISCW’03.
3. Alonso, G, Casati, F, Kuno, H, Machiraju, V, Web services: Concepts, Architectures

and Applications (2003), ISBN 3-540-44008-9
4. Apache webservices projects, AXIS (2004), http://ws.apache.org/axis/.
5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., The De-

scription Logic Handbook (2003), ISBN 0-521-78176-0.
6. Broens, T.H.F., Context-aware, Ontology based, Semantic Service Discovery (2004),

Master thesis, University of Twente, the Netherlands
7. Chen, H., An Intelligent Broker Architecture for Context-Aware Systems (2003),

PhD thesis, University of Maryland Baltimore County.

4 This work is part of the Freeband AWARENESS project

(http://awareness.freeband.nl). Freeband is sponsored by the Dutch
government under contract BSIK 03025.

8. Dey, A., The context toolkit (2004), http://www.cs.berkeley.edu/~dey/context.html.
9. Dey, D., Providing Architectural Support for Context-Aware applications (2000),

PhD thesis, Georgia Institute of Technology.
10. Efstratiou, C., Cheverst, K., Davies, N., Friday, A., An architecture for the Effective

Support of Adaptive Context-Aware Applications (2001), Mobile Data Management
2001, p.15-26.

11. Fensel, D., Ontologies: A silver bullet for Knowledge Management and Electronic-
Commerce (2000), ISBN 3-540-41602-1.

12. Freeband, WASP project (2003), http://www.freeband.nl/projecten
/wasp/ENindex.html.

13. Ganter, B., Stumme, G., Formal concept analysis: Methods and Applications in Com-
puter Science, TU Dresden, http://www.aifb.uni-karlsruhe.de/WBS/gst/FBA03.shtml.

14. Globus, Open Service Grid Architecture (2004), http://www.globus.org/ogsa/.
15. Hewlet Packard, Cooltown project, http://www.cooltown.com/cooltown/index.asp

(2004) .
16. Jena community, A Programmer's Introduction to RDQL (2002),

http://jena.sourceforge.net/tutorial/RDQL/index.html.
17. Jena community, Jena – A Semantic Web Framework for Java (2004),

http://jena.sourceforge.net.
18. Khedr, M., Enhancing service discovery with Context Information (2002), ITS’02,

Brazil.
19. Klein, M., Bernstein, A., Towards High-Precision Service Retrieval (2004), IEEE

Internet Computing, January, p. 30-36.
20. Kouadri Mostefaoui, S., Tafat-Bouzid, A., Hirsbrunner, B., Using Context Informa-

tion for Service Discovery and Composition (2003), Proc. of the 5th Conf. on infor-
mation integration and web-based applications and services, Jakarta, p. 129-138.

21. Li, L., Horrocks, I., A software framework for matchmaking based on semantic web
technology (2003), In Proc. of the 12th Int. World Wide Web Conference, p. 331-
339.

22. Object Management Group, Catalog of Corba Facilities specifications (2004),
http://www.omg.org/technology/documents/corbafacilities_spec_catalog.htm.

23. Object Management Group, Catalog of Corba Services specifications (2004),
http://www.omg.org/technology/documents/corbaservices_spec_catalog.htm.

24. Object Management Group, Catalog of Corba/IIOP specifications (2004),
http://www.omg.org/technology/documents/corba_spec_catalog.htm.

25. OSGi Alliance, OSGi Service Platform Release 3 (2003), http://www.osgi.org/.
26. Parlay group, Parlay X Web Services Specification 1.0 (2003),

http://www.parlay.org/specs/index.asp.
27. Pokraev, S., Costa, P. D., Pereira Filho, J. G., Zuidweg, M., Koolwaaij, J. W., van

Setten, M.: TI/RS/2003/137 Context-aware services: state-of-the-art (2003),
https://doc.telin.nl/dscgi/ds.py/Get/File-27859/Context-aware_services-
sota,_v3.0,_final.pdf.

28. The OWL Service Coalition, OWL-S: Semantic Markup for Web Services (2004),
http://www.daml.org/services/owl-s/1.0/owl-s.html.

29. UDDI.org, UDDI specification version 3 (2004), http://www.oasis-
open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3.

30. van Setten, M., Pokraev, S., Koolwaai, J., Context-Aware Recommendation in the
Mobile Tourist Application Compass (2004), in Adaptive Hypermedia 2004, Eind-
hoven.

31. W3C, OWL (2004), http://www.w3c.org/2001/sw/WebOnt/.
32. W3C, Web service description language (2004), http://www.w3.org/TR/wsdl20/.

