
Extending UDDI with context-aware features based 
on semantic service descriptions 

 
Stanislav Pokraev 

Telematica Instituut 

P.O. Box  589 

7500 AN Enschede 

The Netherlands 

 

Johan Koolwaaij 

Telematica Instituut 

P.O. Box  589 

7500 AN Enschede 

The Netherlands 

 

Martin Wibbels 

Telematica Instituut 

P.O. Box  589 

7500 AN Enschede 

The Netherlands

 
Abstract 
 
The web has evolved from the HTML-based repositories of 
text and images towards the current web services and se-
mantic web developments. Web services are believed to 
help the integration of diverse applications while the se-
mantic web promises to increase the “intelligence” of the 
web, enabling richer discovery, data integration, naviga-
tion and automation of tasks. A natural next step would be 
the combination of these developments, resulting in se-
mantic web services. Another trend we observe is the de-
velopment of next generation networks, such as GPRS and 
UMTS, which provide a richer environment as they will 
have access to information about the user’s, location, 
preferences and changing environment. With the aid of 
this information, service providers will be able to develop 
services that adapt to the user’s context. However, current 
web services technologies, based on WSDL and UDDI, do 
not provide a means for context-aware service discovery. 
In this paper we present the design and implementation of 
an enhanced UDDI server, capable of storage, matching 
and retrieval of semantically rich service profiles that 
contain contextual information. We also present a tool 
that facilitates the creation, publication and discovery of 
such service profiles. 

Keywords 

 
Web services, Semantic web, UDDI enhancement, 
Context-awareness, DAML-S 

1. Introduction 
 

The concept of web services is gaining momentum 
in the sense that both the understanding and the popu-
larity of this concept are increasing. However, as  

 
it is an emerging technology, we can still identify a 
number of open issues. In this paper we focus on the 
issues related to service publication and discovery, and 
especially the issues that come forth from the use of 
the web service paradigm in context-aware applica-
tions. To determine which services are relevant for an 
end-user in his own specific context we need semanti-
cally rich service discovery, and hence also rich publi-
cation. A typical user context can be divided into sev-
eral context elements: environmental elements, per-
sonal elements, task-related elements, social elements, 
historical elements, spatio-temporal elements, etc. To 
serve a user in his context with a relevant service of-
fering is a complex task when all these context ele-
ments have to be taken into account. As an example 
we can imagine a tourist in Amsterdam (spatial), that 
wants to visit a nice museum (task) that suits his inter-
ests (personal) with a couple of friends in his holiday 
(social) because it is a rainy day (environment). 
Chances are that a system will not have access to all 
the relevant data. Finding relevant museums with the 
services they offer requires a registry with powerful 
semantic searching capabilities. Therefore, we propose 
an enhanced service registry that alleviates the limita-
tions of the current web services technologies concern-
ing searching and publication, by the creation of a reg-
istry with a rich semantic model. On the one hand such 
a registry enables service providers to describe their 
services in detail (capabilities, functionality, con-
straints, context, etc.) and to relate those service de-
scriptions to existing ontologies. On the other hand, it 
enables the searching parties to perform a much more 
subtle search that delivers a manageable result set, by 
using constraints, relations between concepts, ap-
proximate matches and semantically rich queries. Last 
but not least, it allows the registry maintainers means 



to improve the quality of the registry by ontology 
monitoring and advertisement expiration to avoid reg-
istry pollution. 
 

2. Current state of technology 
 

A web service can be characterized as a software 
component exposed on the web via a well-defined in-
terface, and described and invoked via international 
standards, including (but not limited to) SOAP[1] and 
WSDL[2]. Web services can be seen as building 
blocks for creating open distributed systems, which 
allow companies and individuals to make their digital 
assets available to the global community at large in a 
simple and effective manner. The spectrum of possible 
web services is impressive, and ranges from single 
functions (e.g. financial calculations or construction 
analysis) to entire business processes such as airline 
ticket reservation. Web services can be reused across 
multiple applications, hence allowing fast and efficient 
web application development.  

In general, three roles can be distinguished in the 
web services concept: a service provider, a service re-
questor, and a service registry. The requestor and the 
provider are able to discover each other via a third 
party, the registry, which holds up-to-date information 
about businesses, and the services they offer. This 
way, a service requestor can discover existing web 
services, determine their purpose, functionality, and 
operation instructions, and hence use a service to his 
benefit. 

Figure 1 

Applications typically communicate with web ser-
vices via SOAP messaging. SOAP messages encapsu-
late the XML payload that is transported to a SOAP 
server, which deserializes the XML, and invokes the 

target web service. The interaction pattern with the 
web service is described in the interface definition 
specified in WSDL. The WSDL refers to an XML 
schema (XSD) that describes the structure of a specific 
class of XML messages. These WSDL descriptions 
can then be referenced from the service advertisements 
in a UDDI[3] registry. The registry uses simple on-
tologies based on so called t-models, but these models 
can only be used to identify or classify businesses and 
their services, and do not relate to the classes of ob-
jects that determine the input and output of a particular 
service. 

The registry plays a central role in connecting a 
service requestor with relevant providers. Such a regis-
try can be company-internal, branch or region oriented, 
but the most common notion is that of the universal 
business registries. From its creation in 2000, UDDI 
has had the intention of providing a directory service 
where service providers and service requestors come 
together to satisfy their needs. It is a central concept in 
the web services architecture[4]. However, the concept 
still has a number of flaws that prevent UDDI from 
reaching the critical mass required for success:  
• Lack of moderation in the central registries causes 
registry pollution and decreasing data quality. 
• Inadequate quality of service guarantees for the 
published services in a registry. 
• Lack of semantic description mechanisms in 
WSDL and UDDI (lack of semantic interoperability, 
explicit semantic models to understand the queries and 
reason about the knowledge). 
• Lack of process specification – e.g. the current 
web service descriptions do not allow for specification 
of the right order of operation invocations, and con-
straints that follow from the high-level process.  
• Lack of mechanisms for fuzzy or inexact match 
e.g. a request for a “transportation service” cannot 
discover “shipping services”. 
• Lack of ontology support. Service providers and 
service requestors have completely different knowledge 
about a service. Service descriptions and service re-
quests have to be understood and agreed upon between 
the two parties by means external to the registry. A 
common ontology is a must in order to facilitate an 
effective discovery process. 
• General (Interoperability between standards, ser-
vice execution, security, quality-of-service, etc) 

Concepts from the semantic web[5] vision can be 
used to alleviate the limitations on the semantic ex-
pressiveness of UDDI. The semantic web is a W3C 

WSDL

Interface

XSD

Class

SOAP

Envelope

XML

Object

S
e
r
v
ic
e

in
v
o
c
a
t
io
n

UDDI

Publication

T-model

Ontology

S
e
r
v
ic
e

d
e
s
ig
n

S
e
r
v
ic
e

p
u
b
li
c
a
t
io
n

WSDL

Interface

WSDL

Interface

XSD

Class

XSD

Class

SOAP

Envelope

SOAP

Envelope

XML

Object

XML

Object

S
e
r
v
ic
e

in
v
o
c
a
t
io
n

UDDI

Publication

UDDI

Publication

T-model

Ontology

T-model

Ontology

S
e
r
v
ic
e

d
e
s
ig
n

S
e
r
v
ic
e

p
u
b
li
c
a
t
io
n



initiative that aims at making the current web machine-
understandable. It is “an extension of the current Web 
in which information is given well-defined meaning, 
better enabling computers and people to work in coop-
eration”[6]. The main principles of the semantic web 
are that all resources in the web (and indirectly, the 
resources from the real world) are identified by Uni-
versal Resource Identifiers (URIs) and have well-
specified types. Using URI’s makes it easy to reuse 
other parties ontologies and resources. Machines can 
use the type of a resource to classify it or to adapt their 
behavior when using it. The type therefore encodes 
(part of) the resources semantics. The semantic web 
tolerates partial information – one can create links to 
other’s resources, without having to worry about re-
versal links. Semantic web does not require an abso-
lute truth – it does not solve the issue of trustworthi-
ness of resources, but it does have mechanisms to ex-
press who (or what) stated a “fact” in its knowledge-
base. Finally, evolution is supported - different people 
can create similar concepts - the semantic web will use 
descriptive conventions to allow for effective combina-
tion of the independent work.  

Ontologies will play a crucial part in the realiza-
tion of the semantic web vision, facilitating the sharing 
of information between communities, both people and 
software agents. To support the use of ontologies, a 
number of representational formats have been pro-
posed, including RDF Schema[7], the Ontology Inter-
change Language (OIL)[8] and the DARPA Agent 
Markup Language (DAML)[9]. These last two have 
been brought together to form DAML+OIL[10], which 
is the basis for the ontology web language (OWL)[11], 
a language now being proposed as a W3C standard for 
ontology and metadata representation.  

DAML+OIL has been designed to describe the 
structure of a particular domain of interest. It takes an 
object-oriented approach by describing the structure in 
terms of classes and properties. An ontology described 
by DAML+OIL consists of set of axioms that asserts 
relationships between classes or properties. From a 
formal point of view, DAML+OIL can be seen as an 
expressive description logic enabling sound, complete 
and efficient reasoning services. DAML+OIL classes 
can be names or expressions. The expressions can be 
built by means of variety of constructors like intersec-
tionOf, unionOf, complementOf, etc.  

Another very important feature of DAML+OIL is 
the set of axioms that the language defines. The axi-
oms make possible to describe subsumption and 

equivalence with respect to classes and properties or 
unions or disjoints of classes. The following example 
gives an idea of how an ontology could be created by 
means of just a few starting concepts and relations 
(Human, Male, parent (Human, Human)): 

 
Female ⊆ ¬  Male 

Man ⊆  Human ∧ Male 

Woman ⊆  Human ∧ Female 

father ⊆  parent (Human, Man) 

mother ⊆  parent (Human, Woman) 

child ⊆  parent ¯  

son ⊆  child(Human, Man) 

daughter ⊆  child(Human, Woman) 
 
The DAML-S coalition[12] is in development of 

semantic markup for service descriptions[13] based on 
DAML+OIL. DAML-S complements WSDL and aims 
at enabling automated discovery, invocation, composi-
tion and execution monitoring of the web services. It 
has well-defined semantics that enables the creation of 
a web services vocabulary by means of objects and 
complex relationships between them (e.g. classes, 
subClass relations, cardinality restrictions, etc.). Fig-
ure 2 presents the DAML-S upper ontology for ser-
vices. 

 

 
 

Figure 2 

 
The top of the DAML-S ontology is the class Ser-

vice. At this level all defined properties are very gen-
eral. The idea is to provide a conceptual basis for 
structuring the services taxonomy, but it is expected 
that the taxonomy itself will be created according to 
the functional and domain specific needs. 

Resource Service

ProfileModel Grounding

described by supportspresents

provides

How does the service work?

inputs

outputs

constrains

Process
Control

…

SOAP

WSDL

……

What does the service do? How can the service be executed?

Resource Service

ProfileModel Grounding

described by supportspresents

provides

How does the service work?

inputs

outputs

constrains

Process
Control

…

SOAP

WSDL

……

What does the service do? How can the service be executed?



The Service Profile is a high level description of 
the service and its provider. It describes the service in 
a human readable way, specifies the functionalities 
provided by the service and its functional attributes 
(e.g. requirements and capabilities). The Service Pro-
file is used for populating service registries, automated 
service discovery and matchmaking. 

The Service Model describes what the service 
does. It facilitates automated services invocation, com-
position, interoperation and execution monitoring. It 
works as follows: Each service is conceived as a sim-
ple or composite process. Associated with each service 
is a set of inputs, outputs, preconditions and effects. 
Composite processes are compositions of simple or 
other composite processes in terms of constructs such 
as sequence, choice, if-then-else, etc. The Service 
Model provides means for describing the data flow and 
the control flow for each composite service.  

The Service Grounding provides a specification of 
service access information. It specifies the communica-
tion protocols, transport mechanisms, etc. 

 

3. Our approach 
 

Our enhanced UDDI server (UDDI+) is an attempt 
to improve the existing discovery mechanisms in cur-
rent UDDI servers. The main goals of UDDI+ are (i) 
to enable service discovery based on semantic informa-
tion associated with the services and (ii) provide the 
user with services that are relevant to his context (e.g. 
location, weather conditions, task, etc.).   

However, information about the user’s context is 
distributed across a number of heterogeneous re-
sources. For instance, the location of the user might be 
obtained from the future 3G mobile platform, user’s 
activities from his calendar (located on the his PDA or 
company server), the user’s colleagues/friends list 
from his instant messaging server, etc. Moreover, 
sometimes we might need to evaluate a certain context 
parameter dynamically given information about an-
other context parameters. For instance, if we want to 
provide the user with a service that is “nearby” we 
need to know what “nearby” means for this user. If 
user walks then “nearby” could probably mean the 
area with 1 km radius from the current location of the 
user, whereas if the user drives, “nearby” could mean 
area with radius 20 km connected with roads. We 
could probably infer whether user walks or drives 
given the speed of the user and the geographical prop-

erties of his location (city street, highway, sea or river, 
etc) or simply from the fact that his phone is attached 
to a car kit. The speed of the user's car for instance, 
can be calculated given the user's previous and current 
position and the time elapsed between the measure-
ments of these two positions, or from the odometer if 
the car supports exposing that information. But to 
really make use of this information, collected from dif-
ferent sources or be able to calculate it on demand, we 
need a common, agreed upon context model. We be-
lieve that such model can be specified by means of 
ontologies.   

In our approach the service requestor creates a de-
scription of a virtual, desired service – a service that 
completely matches his requirements. Furthermore, the 
service requestor provides his contextual information, 
e.g. location, calendar, buddy list, etc. The matching 
then involves comparison of the requested service de-
scription with the registered ones by using the knowl-
edge in the common service and context ontologies. An 
implementation of this approach is described in the 
next section. 

 

4. Design 
 

Figure 3 depicts the design of the UDDI+ server: 

 

Figure 3 

When the UDDI+ server receives a publish mes-
sage for a service, the proxy first forwards it to the 
standard UDDI server. This will handle the message 
and return a Universal Unique Identifier (UUID) of the 
new or updated service. The proxy checks if the pub-

Standard UDDI 
server

Proxy

DAML-S
Repository

Matcher
Scheduler

DAML-S

Service expiration 
information

UDDI Publish 
message

UDDI Inquiry 
message

UDDI Update 
message

UDDI Retrieve 
message

Repository Update 
message

UDDI+ server

Service matcher

Context matcher

Ontology
Database

1. Standard UDDI Publish interface (DAML-S is embedded in the UDDI Publish message
2. Standard UDDI Inquiry interface
3. Inquiry+ interface
4. Ontology management interface

1

4

3

2



lished businessService contains a value for a prede-
fined t-Model that defines its value as a DAML-S de-
scription. If so this description is stored in the DAML-
S repository using the UUID assigned by the UDDI 
server for identification. The same technique is used to 
extract service expiration information. A service can 
hereby specify that it is only available for a limited 
period of time. This information is forwarded to the 
scheduler which is responsible for removing services 
that have expired from the UDDI registry and the 
DAML-S repository. 

For simple inquiry tasks the standard UDDI in-
quiry interface can still be used. For more advanced 
queries that can use the DAML-S data, the Inquiry+ 
interface has been added. By use of this interface the 
service requestor is able to pose an advanced query 
(DAML-S description of a virtual, desired web ser-
vice) and provide information about his context. The 
matcher component then uses the knowledge in the 
ontology database to discover all services that match 
the user request and filters out the services that are not 
relevant to the user based on his context. Depending on 
the return type of the invoked Inquire+ method the 
matcher can then retrieve the UDDI service data from 
the standard UDDI server using the UUID stored with 
the DAML-S data. This makes it possible to feed the 
results to existing UDDI aware tools. 

Finally, an interface has been added for managing 
the ontology database. It currently contains methods 
for reading and modifying the ontologies. This way, 
external tools can discover supported concepts, use 
them and/or add new concepts and relate them to exist-
ing ones. 

We adopt and extend the matching algorithm pro-
posed in[14]. The main rationale behind this algorithm 
is that an advertisement matches a request when the 
service provided by the advertiser can be of some use 
to the service requestor. A match between an adver-
tisement and a request consists of the match of all the 
outputs of the request against the outputs of the adver-
tisement and all the inputs of the advertisement against 
the inputs of the request. The degree of match between 
two inputs or two outputs depends on the relation be-
tween the concepts associated with these inputs and 
outputs. The algorithm proposes 4 degrees of match - 
exact match, plug-in match, subsumes match and fail. 
The detailed algorithm is described in[14]. 

In our approach we use an upper context-ontology 
that facilitates the context matching. Figure 4 gives a 
high-level view of this ontology. The ontology incorpo-

rates external domain specific ontologies as much as 
possible. For example device capabilities are taken 
from the CC/PP (composite capabilities, personal 
preferences)[15] RDF ontology, where as the buddy 
lists uses the vCard[16] ontology. This makes it much 
easier to integrate information from external sources. 
For example the CC/PP profile from mobile devices 
are typically provided by the manufacturer of the de-
vice. 

 

 

Figure 4 

  
 
Once services are discovered by the service 

matcher component, based on their types, capabilities 
and models, the context matcher component filters out 
the services that are not relevant for the user. To per-
form this action, it uses the context ontology and do-
main-specific rules.  

Currently, we are developing a tool to support the 
use of our UDDI+ server. The tool enables easy crea-
tion and management of domain-specific DAML-S and 
context ontologies, service profiles and user requests. 
It also automates the publishing and inquiry of service 
profiles. 

An ontology is about shared understanding of 
some specific domain of interest. It provides interop-
erability and knowledge sharing and reuse and that is 
why its creation requires a domain-specific expertise. 
However, we do not expect domain experts to be also 
DAML-S experts. Therefore, one of the main roles of 
our tool is to provide an intuitive, easy to use, visual 
interface for domain experts to create domain-specific 
service and context ontologies. 

Furthermore, we do not expect service providers 
and service requestors to have any knowledge about 
DAML-S, the domain-specific ontology and the 
UDDI+ publication/inquiry process. For that reason, 

context

location

time

activity

social physical

temperature

illumination

friends list

colleagues list

device capabilities

resolution

color depth

network capabilities

bandwidth latency
speed

…

…

…



another important role of our tool is to hide the com-
plexity of the ontologies as well as the complexity of 
the UDDI+ publication/inquiry process. 

Finally, we need a tool to monitor and manage our 
UDDI+ server. This functionality is crucial because it 
increases the quality of the data stored in our UDDI+ 
server. 

The tool consists of two main parts – a DAML-S 
API that allows for programmatic manipulation of 
DAML-S domain-specific ontologies and their in-
stances, and a dynamically generated user interface 
that allows for visual manipulation of these ontologies 
and instances.  

The tool is aware of the DAML+OIL class and 
property restrictions and can automatically validate the 
user input. Another important feature of the tool is the 
WSDL-to-DAML mapper (figure 5) – a component 
that allows service providers to visually assign mean-
ing to their WSDL operations and parameters. 

 

Figure 5  
 

5. Related Work 
 

The DAML-S Coalition[12] (BBN Technologies, 
Carnegie Mellon University, Nokia Research Center, 
SRI International, Stanford University and Yale Uni-
versity) presents an approach for translating DAML-S 
descriptions to UDDI records[17]. In this work the 
description of the provider of the service is mapped 
onto an instance of the UDDI BusinessEntity that is 
used as a representation of the Business that delivers 
the service. The mapping of the other attributes re-
quires the specification of a set of UDDI t-models, one 
for each attribute from the DAML-S Profile represen-
tation. In this way services can be found and retrieved 

using the standard UDDI keyword search. In addition, 
DAML-S descriptions are stored in an advertisement 
database, enabling semantic matching by using a 
DAML+OIL reasoner. 

The University of Carnegie Mellon is developing 
an agent capability description language called 
LARKS (Language for Advertisement and Request for 
Knowledge Sharing)[18]. Middle or matchmaking 
agents use this language to pair service-requesting with 
service-providing agents, such that the requesting 
agents' requirements are met. LARKS is expressive 
and capable of supporting inference. It also incorpo-
rates application domain knowledge in agent adver-
tisements and requests. Domain-specific knowledge is 
specified as local ontologies in the concept language 
ITL.  

DReggie[19] is a Jini[20] based service discovery 
infrastructure which uses a Prolog reasoner to do a 
semantically richer service discovery. It is an attempt 
to enhance the matching mechanisms in Jini and other 
service discovery systems. The key idea in DReggie is 
to enable service discovery based on semantic informa-
tion associated with the services. In the DReggie sys-
tem, a service discovery request contains the descrip-
tion of an “ideal” service - one whose capabilities 
match exactly with the requirements. Thus, matching 
now involves comparison of requirements specified 
with the capabilities of existing services. Depending on 
the requirements, a match may occur even if one or 
more capabilities do not match exactly. 
 

6. Future work 
 

Service composition will play an increasingly im-
portant role in the future. The current approaches for 
automating this process do not consider the context of 
the web services nor the context of the service request-
ors. In our future work, we would like to extend the 
functionality of UDDI+ server such that it not only 
discover, but also automatically composes new ser-
vices from existing ones taking into account their con-
text. 

DAML-S is not enough to facilitate the desired 
functionality mentioned above. In our future work we 
want develop an upper ontology for describing the ser-
vice’s and user’s context. Moreover, we expect that the 
future web services will be able to adapt themselves to 
the context of the user. In order to discover such ser-
vices or compose new ones, we need a model that can 



describe the adaptability features of web services. To 
achieve this goal we plan to make use of process on-
tologies that define a web service composition taking 
into account rules based on the context of both the ser-
vice and requestor. 

7. Conclusions  
 

We have presented a new approach to enhance the 
publication and discovery mechanisms of the existing 
UDDI service registries with concepts coming from the 
semantic web movement. This is necessary because of 
the increasing requirements from the actual use of the 
web service paradigm. Especially in context-aware 
applications, with a highly dynamic user context, a 
service registry should be able to serve a relevant ser-
vice offering based on complex and less deterministic 
queries. These queries can be answered by adding se-
mantics to the registry. During publication, providers, 
their services and service properties can be related to 
existing ontologies. This enables more efficient and 
powerful search in the service registry. A tool will be 
developed that enables easy creation and management 
of domain specific ontologies, and semi-automates the 
publication of new services by relating them to the ex-
isting ontologies. 

Our developments are part of the WASP pro-
ject[21]. WASP aims at development of a mobile, ser-
vice platform, that operates in multi-operator and 
multi-vendor environments and provides intelligent 
discovery and integration of broad and dynamic range 
of services.  

 

References 
 

[1] Simple Object Access Protocol (SOAP) 
http://www.w3.org/TR/SOAP/ 

[2] Web Services Description Language (WSDL)  
http://www.w3.org/TR/wsdl 

[3] Universal Description, Discovery and Integration 
(UDDI) 
http://www.uddi.org/ 

[4] Web Services Architecture 
http://www.w3.org/TR/2002/WD-ws-arch-
20021114/ 

[5] Semantic web 
http://www.w3.org/2001/sw/ 

[6] The Semantic Web, 
Tim Berners-Lee, James Hendler and Ora Lassila 
http://www.sciam.com/article.cfm?articleID=0004
8144-10D2-1C70-84A9809EC588EF21 

[7] RDF Vocabulary Description Language: RDF 
Schema 
http://www.w3.org/TR/rdf-schema/ 

[8] Ontology Inference Layer (OIL) 
http://www.ontoknowledge.org/oil/ 

[9] DARPA Agent Markup Language (DAML) 
http://www.daml.org/ 

[10] DAML+OIL (March 2001) Reference Description 
http://www.w3.org/TR/daml+oil-reference 

[11] Web Ontology Language (OWL) 
http://www.w3.org/TR/owl-ref/ 

[12] DAML-S Coalition, DAML Services, 
http://www.daml.org/services/  

[13] DAML-S 
http://www.daml.org/services/daml-s/0.7/ 

[14] Semantic Matching of Web Services Capabilities,  
Massimo Paolucci, Takahiro Kawamura, Terry R. 
Payne, and Katia Sycara 
http://www.daml.org/services/ISWC2002-
Matchmaker.pdf 

[15] Composite Capabilities/Preferences Profile 
http://www.w3.org/Mobile/CCPP/ 

[16] Representing vCard Objects in RDF/XML 
http://www.w3.org/TR/vcard-rdf 

[17] DAML-S Coalition, Importing Semantic Web in 
UDDI,  
http://www-
2.cs.cmu.edu/~softagents/papers/Essw.pdf 

[18] University of Carnegie Mellon, Language for Ad-
vertisement and Request for Knowledge Sharing,  
http://www-2.cs.cmu.edu/~softagents/larks.html 

[19] University of Maryland , DReggie: Semantic Ser-
vice Discovery for M-Commerce Applications, 
http://daml.umbc.edu/papers/dreggie.pdf 

[20] Jini[tm] Network Technology 
http://wwws.sun.com/software/jini/ 

[21] WASP project 
http://www.freeband.nl/projecten/wasp/ENindex.ht
ml 

 


