
Web Services
About to integrate distributed applications?

GigaTS D2.2.9

COPYRIGHT © 2001 TELEMATICA INSTITUUT

PERSONAL USE OF THIS MATERIAL IS PERMITTED. HOWEVER, PERMISSION TO REPRINT/REPUBLISH THIS MATERIAL FOR ADVERTISING OR
PROMOTIONAL PURPOSES OR FOR CREATING NEW COLLECTIVE WORKS FOR RESALE OR REDISTRIBUTION TO SERVERS OR LISTS, OR TO REUSE ANY
COPYRIGHTED COMPONENT OF THIS WORK IN OTHER WORKS MUST BE OBTAINED FROM OR VIA TELEMATICA INSTITUUT (HTTP://WWW.TELIN.NL).

Colophon

Date : November, 2001

Version : 1.0

Change :

Project reference : GigaTS/D2.2.9

TI reference : TI/RS/2001/062

URL : https://extranet.telin.nl/docuserver/dscgi/ds.py/Get/File-18739

Access permissions : Public

Status : Final

Editor : J.W. Koolwaaij

Company : Telematica Instituut

Author(s) : P. Fennema

J.W. Koolwaaij

M. Lankhorst

Synopsis:

One of today’s most challenging issues for real

business-to-business integration is the integration

of different and diverse applications. The promise of

Web Services is that applications can be turned into

easy to use web applications using open standards

such as XML, SOAP and UDDI. This report

explains the concepts and reveals the hurdles on

the way to total integration of applications as Web

Services.

G I G A T S / D 2 . 2 . 9 V

Giga Transaction Services

The project Giga Transaction Services supports organizations in the development of

innovative transaction services. It does so with state of the art knowledge, methods and

software tools that allow for effective development of new services. GigaTS takes the

business perspective as a starting point, looking at networks of organizations and the way e-

commerce technology can support them. Methods and tools are rooted in a combination of

technological and business knowledge of currently available and future components and e-

commerce applications. In this way re-use of components is promoted and time-to-market of

services is reduced. Fast and effective design and introduction of e-commerce services is our

central objective.

Giga Transaction Services has three main results:

• technology scans and demonstrators, aiming at (next generation) Internet technology as

well as general e-commerce tools, components, frameworks and standards;

• component libraries for e-commerce and electronic trade, capturing the essential

elements of business models, transaction scenarios and ICT components for e-

commerce;

• a tool-supported environment for Rapid Service Development (RSD), a methodology for

the design and development of transaction services, linked to software and e-commerce

development tools.

These products are incrementally built. On a regular basis, results come available to the

public, and in seminars and on our web site [GigaTS] we actively disseminate the results.

Giga Transaction Services is a knowledge-providing project under GigaPort Applications. The

Telematics Institute carries out the larger part of the work. The project emphatically tries to

actively transfer knowledge and results to companies and organizations in pilot in a next

generation Internet setting. Such pilots can consist of experiments with new services, the

design or evaluation of e-commerce services and architectures, or company specific scans

and demonstrators.

G I G A T S / D 2 . 2 . 9 VII

Table of Contents

1 Introduction 1

1.1 Application integration within the enterprise 1

1.2 Business to business integration 2

1.3 The role of XML 3

1.4 Transforming XML 5

1.5 Messaging standards 8

1.6 Emerging Web Services 9

2 Web Services 11

2.1 Concept 11

2.2 Web Service architecture 12

2.3 Examples of Web Services 14

2.3.1 Distributed computing service 14

2.3.2 Stock quote service 15

2.3.3 Translation service 15

2.3.4 Service broker 15

2.4 Protocols for Web Services 16

2.4.1 SOAP: Simple Object Access Protocol 18

2.4.2 UDDI: Universal Description, Discovery, and Integration 20

2.4.3 WSDL: Web Service Description Language 22

2.4.4 WSFL: Web Services Flow Language 24

2.5 BPSS: Business Process Specification Schema 25

2.6 TPAML: Trading Partner Agreement 27

2.7 XAML: Transaction Authority Markup Language 28

2.8 Wrapping up 29

3 Web Services: benefits and obstacles 30

3.1 Benefits of Web Services 30

3.2 Hurdles for Web Services 31

4 Conclusion 34

4.1 Pro 34

4.2 Con 35

References 36

XMLbus (Iona) 39

GLUE (The Mind Electric) 39

CapeConnect (CapeClear) 39

.NET My Services (Microsoft) 39

WASP (Idoox) 40

G I G A T S / D 2 . 2 . 9 1

 1 Introduction

The time that applications were stand-alone and built for one specific purpose and one

specific user(group) is not so far behind us. Today, however, applications must be generic

and multi-purpose in a multi-user and multi-platform environment, and are increasingly

interconnected. This report focuses on the difficulties and possibilities in integrating

applications in the world we live in today.

Communication via the Internet has leveled out at least one of the traditional barriers in

integrating applications across business boundaries. But leveling one barrier often reveals a

couple of new ones. To name a few: how to integrate (or synchronize) business processes,

what about integrity and quality of data, how secure is it to integrate applications over the

Internet, how can application interfaces be described and discovered, et cetera.

In this chapter, we will discuss integration of applications both within and between enterprises,

XML as an enabling technology in application integration, and finally Web Services as a new

concept to expose applications and business functions via the Internet using open web

protocols. In the next chapter, we will go into Web Services in more detail, provide an

overview of existing technologies that support Web Services, and discuss the benefits and

drawbacks of Web Services.

1.1 Application integration within the enterprise

EAI stands for Enterprise Application Integration and can be defined as application-

independent, business process-oriented software that integrates the applications of the

enterprise [Aberdeen], or several enterprises [Gilpin01]. Although the acronym EAI contains

the E of Enterprise, EAI is also used for application integration across multiple enterprises. A

synonymous acronym is IAI (Internet Application Integration), which stands for integrating

applications across multiple enterprises in order to automate multi-enterprise business

processes where the Internet provides the communications backbone.

In this document, we will reserve the acronym EAI for the process of bringing together

systems that reside within a single enterprise. For integration between multiple enterprises we

will use the acronym B2Bi (business to business integration). And although B2Bi might sound

like a panacea, and look like the promised land, the road to successful B2Bi will not be

smooth and without hurdles, and it is good to realize that B2Bi still requires EAI. In the next

chapter, we will go into Web Services as a concept that connects the front doors of multiple

enterprise, but first we have to connect the front door with all the different systems

(databases, legacy systems and core applications) in the back office. That is the task of EAI.

Here we will focus on B2Bi; for a more elaborate discussion of EAI we refer the reader to

[Koolwaaij01] which deals with EAI in much more detail.

2 G I G A P O R T

1.2 Business to business integration

Despite the barriers which are still left, and the struggling of organizations to support the

internal requirements B2Bi is really taking off. Figure 1-1 shows the evolution in applications

and integration from standalone systems (stovepipes) via EAI to real integration of component

based, loosely coupled, Internet connected, distributed applications. Most of the EAI providers

mentioned in [Koolwaaij01] are moving towards business integration, because most of the

techniques and technology that make up EAI are also applicable to B2Bi.

WebMethods, one of the largest B2Bi providers, sells their integration platform by

representing it as “the solution for integrating the extended enterprise by addressing the six

key elements encompassing a business process - enterprise applications, mainframe and

legacy applications, databases and data warehouses, human workflow, Web Services and

business partners.” [WebMethods] In other words, on top of integration of enterprise-internal

applications, databases and legacy systems, B2Bi has to integrate businesses, by exposing

their applications to their business partners using Web Services, and to be able to find

business partners and the services they offer in a dynamic way.

This way, B2Bi is inducing one of the most remarkable changes in the business world today,

namely the blurring of corporate boundaries and the new capabilities to freely exchange the

information that drives business processes. Although B2Bi is often over-hyped, the e-

business is much more closely integrated with its customers, suppliers and partners simply

because the communications technology enables this to happen. And whilst the focus of EDI

(electronic data interchange) was mainly on integration of data, the focus of new Internet

based technologies -like B2Bi, XML and Web Services- is not only on integration of data, but

also on integration of business functions and processes, thus enabling companies to conduct

business in a much more flexible manner.

This means that the relationships can be established and dismantled rapidly, making transient

relationships viable. Especially for specific projects and non-core processes, it will be possible

to dynamically find a suited third party that offers the desired product, service or information.

In this scenario, it becomes more difficult to define the scope of an e-business application as

parts of the business components are executing in completely different environments. This

requires open protocols to connect to and integrate with these business components, in

particular pre-defined, well-designed and agreed-upon interface definitions and process

specifications, to obtain a much looser coupling of technologies [Lankhorst01].

In this context, one of most promising concepts in B2Bi of today is the notion of Web

Services. Web Services can be seen as business functions exposed to the web using

standard, open web protocols, which allow companies and individuals to make their digital

assets available to the global community at large in a simple and effective manner. XML plays

an important role in the definition, implementation, and execution of Web Services. Therefore,

we will first introduce XML, followed by the concept of Web Services and its stack of XML

based technologies for messaging, transport, description, and invocation.

G I G A T S / D 2 . 2 . 9 3

Figure 1-1: Application and Integration evolution [Wilkes01]

1.3 The role of XML

Extensible Markup Language (XML) is said to be the ASCII of the 21st century for structured

data. And in a way, that is true: XML basically is very simple, but opens new perspectives for

B2Bi as soon as parties agree to represent their data in XML.

XML is a flexible and extensible markup language derived from the Standard Generalized

Markup Language (SGML, ISO 8879). SGML is the mother of all markup languages, and XML

can be seen as SGML, without those parts that are hard to implement in software products,

and targeted to web applications. For a complete overview of the differences between SGML

and XML we refer to [Clark01].

As said, XML is a so-called markup language. Historically, the editor scribbled markup in a

text to describe how the text should be laid out. Nowadays, markup defines the meaning of a

text. One of the major benefits of XML is that it separates the structure, content, and layout of

documents, as opposed to HTML, which is primarily a formatting language. HTML is loosely

based on SGML and can be seen as SGML with exactly one fixed document type definition

(DTD), which is focused on the formatting of documents. In XML, the user can specify the

4 G I G A P O R T

document structure in a user-defined DTD, which is extensible. Structure and content are

strictly separated, hence a DTD can be used for several XML documents as a template.

Finally, the presentation is specified in a style sheet. Using different style sheets, the same

content can be presented in numerous ways, without having to reorganize this content.

These are the primary ingredients: the content in XML, a document type definition or schema

specifying structure, and a presentation specification that states how the information in an

XML document should be displayed. Its simplicity, however, is also its power: instead of

having a fixed language (e.g. HTML, which specifies the content of hypertext documents),

XML is a meta-language that opens the possibility to define new languages, new formats.

These can be used for many different purposes, including the specification of

• configuration files in servers,

• messages,

• documents (e.g. DocBook),

• interface definition (as in C#),

• structure documents (XML Schema is also written in XML),

• envelopes (e.g. SOAP),

• metadata (e.g. MPEG7),

• graphics (e.g. SVG),

and much more. XML is so powerful because it can be used in a wide range of applications,

yet the support (in terms of tools and code) can be very generic. For data structuring

purposes, XML will be what ASCII is for uniform character encoding, and both simplify (or

even enable) communication between totally different applications. It is good to keep in mind

that XML is often the foundation layer upon which a myriad of higher-level standards has

been built. In the W3C family alone, there are already roughly twenty XML based standards.

(An impression is depicted in Figure 1-2.)

Below you see an example of an XML document specifying a Scalable Vector Graphic (SVG).

It conforms to the DTD for SVG documents, and shows a simple button with the text

‘BehaviourDiagram’.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE svg SYSTEM "svg-20001102.dtd">

<svg viewBox="0 0 500 200" xmlns:telin="http://www.telin.nl">

<desc>SVG image for RSD</desc>

<title>B2B2ME Scenario in RSD</title>

<g id="Button1" style="cursor:hand;" onclick="telin:show('BehaviourDiagram');">

<rect class="menu" y="50" width="350" height="70" rx="10" ry="10" x="40"/>

<text class="menu" y="100" x="60">BehaviourDiagram</text>

</g>

</svg>

G I G A T S / D 2 . 2 . 9 5

;0/
�FRQWHQW�

;0/�6FKHPD
�VWUXFWXUH�

;6/
�SUHVHQWDWLRQ�

&66
�VW\OH�

;+70/
�ZHE�

;3RLQWHU
�DGGUHVVLQJ�

;/LQN
�OLQNLQJ�

;)RUPV
�IRUPV�

:�&�+RPH

60,/
�PXOWLPHGLD�

69*
�JUDSKLFV�

Figure 1-2: A few important components in the W3C family of standards.

In B2B communication, XML is most frequently used as a language to structure messages or

documents according to an agreed-upon schema or DTD.

XML and XML schema are being there to stay. The power of XML lies in the separation

between content, structure and presentation. Representing data in XML will ensure the

durability and accessibility of the data for a long time to come. XML will be the ASCII of

the 21st century, which enable standardized communication between parties.

1.4 Transforming XML

In practice, however, it will never be the case that all procurement systems in—let’s say—the

IT sector use exactly the same XML schema to describe their purchase orders. Typically, the

in-house format (as specified in a database or XML schema) needs to be converted to a

public XML format, which can be sent to a party that is known to understand messages in

such a format.

The Extensible Style Sheet Language (XSL) is designed to apply representation style to XML

documents. XSL is a specification under development by the World Wide Web Consortium for

applying formatting to XML documents in a standard way. XSL includes a transformation

language (XSLT), a formatting language (XSL-FO), and a query language (XPATH). Each of

these languages is represented in XML. The 1.0 versions of the transformation language and

the query language are W3C recommendations; version 1.0 of the formatting language is still

a candidate recommendation.

The most important part is XSLT: it describes templates that define rules for how one XML

structure is transformed into another XML structure. In other words, XSLT can be used to map

an XML document conformant to XML schema A to a XML document conformant to XML

6 G I G A P O R T

schema B. Examples of transformations include filtering, re-ordering, and extension of XML

documents. For example, XSLT can be used to transform a Rossetanet purchase order to an

xCBL purchase order (for an explanation on RosettaNet and xCBL see Section 1.5), or to take

that same purchase order and transform it into good-looking, human-readable HTML, or to

translate into an in-house XML format which can be read by a (legacy) application. Thus, its

ability to transform data from one XML representation into another XML representation has

numerous applications in XML-based electronic data interchange, metadata exchange and in

general everywhere where there is a need to convert between two or more data

representations.

During an XSL transformation, an XSL processor reads an XML document (or better: its DOM,

the XML representation in memory) and the desired XSL style sheet. Based on the

instructions in the style sheet the XSL processor outputs another XML document. There is

special support for outputting HTML documents (and even for output of plain text documents).

Let us consider the following sample XML document describing one single party.

<?xml version="1.0" encoding="UTF-8"?>

<PARTYINFO party_type="INSURANT">

<NAME>Bob Jonson</NAME>

<ADDRESS>

<STREET>Viaweg</STREET>

<NUMBER>15</NUMBER>

<CITY>Enschede</CITY>

</ADDRESS>

</PARTYINFO>

An XSL document basically contains a list of templates. A template rule has a pattern

specifying the nodes it applies to, and its content is ‘executed’ when a node matching the

pattern is parsed. A template normally contains new XML elements and values, copies sub-

trees, elements and values from the source XML tree, and applies other templates. An

example is shown below. It contains two simple templates: one matching the document root,

and one for the PARTYINFO element.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html>

<head>

<title>

Information about

<xsl:value-of select="PARTYINFO/@party_type"/>

</title>

G I G A T S / D 2 . 2 . 9 7

</head>
<body>

<xsl:apply-templates select="PARTYINFO"/>

</body>

</html>

</xsl:template>

<xsl:template match="PARTYINFO">

Name:<xsl:value-of select="NAME"/>

 Street: <xsl:value-of select="ADDRESS/STREET"/>

Number: <xsl:value-of select="ADDRESS/NUMBER"/>

City: <xsl:value-of select="ADDRESS/CITY"/>

</xsl:template>

</xsl:stylesheet>

The result is a simple HTML document representing name and address of each PARTYINFO

element in the source XML document.

Name: Bob Jonson

Street: Viaweg

Number: 15

City: Enschede

A number of tools exist to assist you in writing XSL transformations. The most well known

include Biztalk mapper, IBM XSLerator, Whitehill <xsl>composer, and XMLSpy 4.0. To give a

impression of these tools: Biztalk mapper offers a GUI to design a mapping between one XML

schema and another. It provides drag-and-drop mapping of input fields to output fields, pre-

build transformation functions (“functoids”) for string manipulation, mathematical functions,

logical functions, date & time, scientific functions, scripting. And finally, it generates

transformation maps based on XSLT. Figure 1-3 offers a view on the GUI of Biztalk mapper.

In the lower panel you see the generated XSLT.

XSLT is an indispensable technology for transformation of XML content from one

schema definition to another. It will be supported more and more by dedicated tools as

well as the larger B2Bi platforms. It has a very powerful addressing language and a

modular, template-based approach, which make it useful for almost all transformations

that do not require too much ‘external intelligence’, otherwise additional scripting might

be necessary.

8 G I G A P O R T

Figure 1-3: Example of BizTalk Mapper in action

1.5 Messaging standards

We briefly go into XML messaging standards for e-business. There exist quite a number of

standards, commercial (cXML, BMEcat, ebXML), financial (finXML, OFX, BIPS), supply-chain

(RosettaNet, eCo, BizTalk), et cetera. For a more complete overview we have to refer to other

sources, as [Janssen02] and [XML02]. In this section, we will focus on two open initiatives

that supply concrete structure definitions of their XML messages for B2B exchange of

business documents in the form of document type definitions or schemas, namely xCBL and

RosettaNet.

xCBL

Commerce One’s Common Business Library (xCBL) 3.0 was announced in November 2000. It

covers a wide variety of B2B e-commerce scenarios, in both the MRO/Indirect Procurement

and Direct Goods arenas. It is an open XML specification for the cross-industry exchange of

business documents such as product descriptions, purchase orders, invoices, and shipping

schedules. xCBL 3.0 is a set of XML building blocks and a document framework that allows

the creation of robust, reusable, XML documents for electronic commerce. Using the xCBL

3.0 document framework, businesses everywhere can exchange business documents of

different types, resulting in frictionless electronic commerce across multiple trading

G I G A T S / D 2 . 2 . 9 9

communities. For businesses already using traditional Electronic Data Interchange (EDI)

standards, xCBL 3.0 provides a transition path to an XML-based commerce capability [xCBL].

RosettaNet

RosettaNet is an organization set up by leading information technology companies to define

and implement a common set of standards for e-business. RosettaNet is defining a common

parts dictionary so that different companies can define the same product the same way. It is

also defining up to 100 e-business transaction processes and standardizing them. Because

RosettaNet is supported by all or most of the major companies in the IT industry, its standards

are expected to be widely adopted [RosettaNet]. The standards being developed by

RosettaNet include:

• PIPs: RosettaNet Partner Interface Processes define business processes between trading

partners in several so-called clusters, including order management, product information,

and inventory management.

• Dictionaries: a common set of properties for PIPs. The RosettaNet Business Dictionary

designates the properties used in basic business activities. RosettaNet Technical

Dictionaries provide properties for defining products.

• RNIF: The RosettaNet Implementation Framework provides exchange protocols for quick

and efficient implementation of PIPs.

• Product & Partner Codes: Product and partner codes in RosettaNet standards expedite

the alignment of business processes between trading partners. Included are both

identification codes (DUNS and GTIN) and classification codes (UNSPSC).

A practical example of a PIP is number 3A2 with the name ‘Query Price and Availability’. This

PIP contains two message specifications (PriceAndAvailabilityQuery and

PriceAndAvailabilityResponse) in the form of DTDs, and a Word document specifying the

business process flow (choreography), and the message exchange control parameters. The

focus is on the "public business process", the description of what the seller will do and how

the buyer will respond.

RosettaNet should upgrade to XML schema, define their PIPs in a machine-readable

format (for example, according to ebXML’s business process specification scheme), and

provide service interface definitions in order to be successfully applied in Web Services

1.6 Emerging Web Services

These XML messaging standards form the basis for new B2B services offered over the

Internet, or in short Web Services. Web Services are a new model for using the web for

building applications. Transactions can be initiated automatically by a program, not necessarily

by a human using a browser, can be described, published, discovered, and invoked

dynamically in a distributed computing environment, in which XML plays an important enabling

role. And that while users of these services will be often unaware of the XML technologies

under the hood, and developers not spending too much time on some layers in his

implementation, because a substantial part of the work has already been done.

10 G I G A P O R T

The notion of Web Services can fundamentally change application development. Rather than

building monolithic applications that are not built with the vision to integrate with other

applications one day, the next generation of applications will be built from the ground up with

integration in mind. This will open up a broad array of options for developers. For example,

rather than building their own billing component for an e-commerce application, developers

will be able to call an external billing component, which has published its interface definition in

a central registry, and which can be invoked using open protocols via the web.

In the next chapter we will see what Web Services are exactly, and which XML standards are

important in that context.

G I G A T S / D 2 . 2 . 9 11

 2 Web Services

2.1 Concept

Before we introduce Web Services, let us first think a moment about what a service is exactly.

In our view,

A service is the externally visible part of a specific business function.

For example, a bank offers a service to change money. Such a service is ‘invoked’ by

stepping up to the counter and asking the clerk behind the counter to change your money into

a specific foreign currency while handing over an amount of money in your national currency.

You do not have to be aware of the business function itself, e.g. where and how the foreign

money is stored and that the clerk has to check all bank notes with UV light. It suffices for you

to ask to change this amount of money in that currency.

This looks very simple, but how do you know where the bank is, how do you know which

services the bank offers, and how do you know what to ask the clerk when you want to have

your money changed? The answer is simple: humans have learned all the answers

throughout your life and have built up enough context information to complete the process.

For application to application communication, however, all context information has to be

gathered at the moment of the interaction. Web Services make application to application

communication possible by defining exactly the semantics, protocols, and interfaces needed

in the interaction. Let us first define what a Web Service is.

A Web Service is the externally visible part of a specific business function that is exposed

to the web via a well-defined interface, and described and invoked via standard web

protocols.

For example, a bank offers a CurrencyConversion Web Service. Such a service is invoked by

pointing to the correct web location (usually a URL), sending a method call to that location in

an agreed-upon format, using the input parameters FromAmount, FromCurrency, ToCurrency,

as specified in the service description, and waiting to receive the ToAmount result. You do not

have to be aware of the Web Service implementation details, on which platform it runs, in

which language it has been written, et cetera.

This also looks very simple, but how does an application which wants to convert an amount

from currency A to currency B know where the Web Service is located, which Web Services

the bank offers, and what the input and output parameters are? The answer is that all these

things have to be specified exactly in a machine-readable, open and agreed-upon format, and

12 G I G A P O R T

be stored at a specific web location. In this chapter, we will investigate in detail which

technologies are necessary to use Web Services successfully.

Web Services can be seen as building blocks for creating open distributed systems, which

allow companies and individuals to make their digital assets available to the global community

at large in a simple and effective manner. The spectrum of possible Web Services is

impressive, and ranges from simple single functions such as specific financial calculations to

entire processes such as airline ticket reservation. Web Services can be reused across

multiple applications, hence allowing fast and efficient web application development. In this

context, we can understand the slogans ‘apps on tap’ of HP and ‘no more gaps between apps’

of Microsoft.

In general, three roles can be distinguished in the Web Services concept: a service provider,

a service requestor, and a service registry. The requestor and the provider are able to

discover each other via a third party, the registry, which holds up-to-date information about

businesses, and the services they offer. This way, a service requestor can discover existing

Web Services, determine their purpose, functionality, and operation instructions, and hence

use a service to his benefit. Thus, we can identify the following actions:

• The party providing a service must publish the availability of this service via a central

registry.

• The party requesting a certain service is then able to find all services meeting his needs

and select the best fitting service by consulting the registry.

• Finally, the service requester binds to the service provider and is ready to use the service.

These roles and actions are schematically depicted in Figure 2-1.

6HUYLFH
SURYLGHU

6HUYLFH
UHJLVWU\

6HUYLFH
UHTXHVWRU

3XEOLVK

%LQG

)LQG

Figure 2-1 Three different roles and their interactions in the Web Services concept

2.2 Web Service architecture

In this section, we will investigate an example of a Web Service architecture. Suppose that

four single servers expose functions (stock, calendar, e-mail and news) as Web Services.

Since their interface definitions are published in the registry of a central third party, a client will

be able to invoke these services at a specified access point (usually a URL). Communication

G I G A T S / D 2 . 2 . 9 13

with the Web Service is possible via SOAP (see section 2.4.1) through firewalls since they

use HTTP as a transport mechanism (as depicted Figure 2-2).

The client is then able to build multiple Web Services into a web application simply by pointing

to the appropriate access point. At runtime, all the service calls will automatically be packaged

and handled through an XML interface. Developers can create and use Web Services on any

platform, in any programming language, since the standardized service interface hides the

implementation details of the service. This enables e-business application developers build

applications more quickly by assembling them from existing, reusable Web Services instead

of recreating functionality again and again. It is not hard to imagine that the keywords for Web

Services will be loosely coupled, component-oriented and cross-technology.

Figure 2-2: Example of an aggregated Web Service

A generic architecture for a Web Service is shown in Figure 2-3. The architecture is divided

into five logical layers. Furthest from the client is the data layer, which stores information

required by the Web Service. Above the data layer is the data access layer, which presents a

logical view of the physical data to the business layer. The data access layer isolates

business logic from changes to the underlying data stores and ensures the integrity of the

data. The business layer implements the business logic of the Web Service. [Kirtland01]

As in Figure 2-3, a web application is often subdivided into two parts: the business façade and

the business logic. The business façade provides a simple interface that maps directly to

operations exposed by the Web Service. The business façade uses services provided by the

business logic layer. In a simple Web Service, all the business logic might be implemented by

the business façade, which would interact directly with the data access layer. Client

applications interact with the Web Service listener. The listener is responsible for receiving

incoming messages containing requests for service, parsing the messages, and dispatching

the request to the appropriate method on the business façade. If the service returns a

response, the listener is also responsible for packaging the response from the business

façade into a message and sending that back to the client. The listener also handles requests

14 G I G A P O R T

for contracts and other documents about the Web Service. So, the only part of the Web

Service that knows it is part of a Web Service is the listener!

Data

Data access

Listener

Business logic

Business facade

Web service client app

Service
response

Service
request

Figure 2-3: Generic Web Service architecture

2.3 Examples of Web Services

Current examples of Web Services usually perform a single function, but still they are very

useful to demonstrate the concept of Web Services to work in practice. In this section we

elaborate on three examples of such Web Services, namely a distributed computing service, a

stock quote service and a translation service.

A quick search in March 2001 (via http://www.salcentral.com) delivers 54 examples of Web

Services, including an address book service, a random number generator (dice thrower),

simple arithmetic services (calculator, factorial, gcd), conversion services (unit of measure,

currency), financial services (tax, stocks), and information services (weather, traffic, FedEx

tracker). In July 2001, there are already 105 examples to be found at SalCentral, including

more complex examples are airline flight information and Ebay bid services.

2.3.1 Distributed computing service

A Web Service may offer its computing power to users with less powerful or very busy

computing systems. Especially when a specific process is resource-intensive it may be useful

to find a service provider who offers his CPU time to perform these processes. Examples of

G I G A T S / D 2 . 2 . 9 15

resource-intensive computing processes include audio/video editing, financial computations,

and scientific analysis.

Suppose a geological institute has developed a new mathematical model for the propagation

of waves through the earth’s soil during an earthquake and the effect on buildings and

infrastructure. To market this new model, they may issue a complete new software package

implementing the new model, but it has many advantages to make this model available via a

Web Service: global reach, easier discovery, and one-spot maintenance. After the client

discovered the new earthquake service, he supplies a description of the geological situation

(in a format specified by the service description), and receives a report illustrating the impact

of an earthquake in this situation. This way the client can investigate multiple situations

without overloading his own computing power and with the most up-to-date version of the

model.

2.3.2 Stock quote service

Financial services are among the most frequently mentioned examples of Web Services. A

stock quote service supplies the service requestor with the most recent trade price for a given

ticker symbol. An application implementing an investment rule set can use these trade prices

to propose buy-or-sell decisions to the investor.

2.3.3 Translation service

A translation Web Service translates text from one human language in another. In

international trade, companies often need to have an impression of the meaning of a text in a

foreign language, and a service offering automatic translation may be of great help. The most

well-known example of a translation service is Babelfish, which translates between English,

Spanish, Portuguese, French, Italian, German, Chinese, Japanese, Korean and Russian

[Babelfish].

2.3.4 Service broker

Until now, we have seen examples of simple, single-function Web Services. Let us look into

the more complex example of a service broker. A service broker is also a Web Service, which

provides an aggregated service combining multiple single-function Web Services. In Figure

2-4, we see a service broker which decomposes the complex need of a certain buyer for a

product in the need for a catalog/inventory service offered by a supplier, a transport service

offered by a logistics provider, and an information service offered by a trusted third party.

16 G I G A P O R T

Report
results

Report
status

Report
error

Request
service

Provide
results

Request
service

Provide
results

Provide
results

Request
service

Provide service
description

Find
services

Information
service

Process
service request

New
service

Information store

Logistics
service

Process
service request

New
service

Logistics schedule

Supplier

Process
service request

New
service

Inventory catalog

Service
registry

Search and retrieve
relevant services

Registry

Register
service

Service broker
Register need

User directory

Service directory

Service profile

Resolve need
into subservices

Process
supplier details

Aggregate
results

Buyer

Need for
service

Select
optimal results

Specify need

Log
progress

Figure 2-4: Service broker scenario

2.4 Protocols for Web Services

Let us now think about the necessary technologies to build successful Web Services. In this

section, we identify the building blocks that enable the concept of Web Services to become a

reality. These building blocks can be classified in a layered model. These layers (depicted in

Figure 2-5) are transport, exchange, syntax, messaging, discovery, description and process.

G I G A T S / D 2 . 2 . 9 17

7&3�,3

:6'/

8'',

62$3�;3

;0/

+773

7UDQVSRUW

'HVFULSWLRQ

'LVFRYHU\

0HVVDJLQJ

6\QWD[

([FKDQJH

:HE�VHUYLFH�WHFKQRORJ\�VWDFN

3URFHVV :6)/

Figure 2-5: The most frequently foretold Web Service technologies

We will focus on the most important technologies in the five top layers:

1. XML offers a syntax to describe information,

2. SOAP for messaging between service requester, registry, and provider,

3. UDDI to find the necessary services,

4. WSDL to describe how the Web Service works,

5. WSFL to describe the process of interaction between multiple Web Services

In the next sections we will briefly discuss SOAP, UDDI, WSDL and WSFL. For XML we refer

to the more elaborate discussion in section 1.3.

To put things in a broader perspective, we show a model with more high-level layers (process,

negotiation and transaction) and also the different approaches by Microsoft, IBM, HP and

ebXML in Figure 2-6. Note that although there is much competition between these

approaches, there are also a substantial number of open standards that are agreed upon

between these four parties. The slogan seems to be ’collaborate on standards, compete on

implementation’, which is of course a commendable initiative. By this time (November 2001),

HP already cancelled their efforts on e-speak and adopted the MS/IBM approach of WSDL

and UDDI.

The horizontal dividing line between readily applicable and supported standards and the

almost unsupported standards under discussion is somewhere halfway between the discovery

and the process layer. Hence, in this document we will focus on the message, transport,

discovery and description layer, and only briefly go into the more high-level layers. But it is

good to know that there still will be many unsolved problems in the process, negotiation and

transaction layers.

18 G I G A P O R T

E
rr

or
 h

an
dl

in
g

S
ec

ur
ity

A
ut

he
nt

ic
at

io
n

Negotiation

Process

Description

Transport

Transactions

Discovery

Message

The Microsoft way The HP wayThe IBM way The ebXML way

Collaboration
partner profile

BizTalk
XLang

WSDL

UDDI

SOAP

XML / EDI / Flat File

E-speak

XAML

Coll. partner
agreement

Registry &
repository

Business
process meth.

Transport,
routing, pack.

BizTalk
Components

tpaML

WSFL WSCL

Core comp.

SFS

co
n

ce
p

tu
al

im
p

le
m

en
ta

b
le

Figure 2-6: B2B integration and the standards used by Microsoft, IBM, HP and ebXML.

2.4.1 SOAP: Simple Object Access Protocol

According to the W3C note, SOAP is a lightweight protocol for the exchange of information in

a decentralized, distributed environment. It is an XML-based protocol that provides a

specification for:

• an envelope that defines a framework for describing what is in a message and how to

process it (the header provides contextual information about the message),

• a set of serialization and encoding rules for expressing instances of application-defined

data types,

• a convention for representing remote procedure calls and responses,

• binding to HTTP and other first transport layer protocols

• exception processing rules and formats

SOAP can potentially be used in combination with a variety of protocols; however, almost all

available documentation describes SOAP in combination with HTTP, although SOAP is by no

means restricted to the HTTP binding.

It can be seen as both an advantage and a potential danger of SOAP that, since HTTP

requests are usually allowed through firewalls, SOAP method calls pass through the firewall.

It is an advantage because this is the way to communicate with programs anywhere via a

G I G A T S / D 2 . 2 . 9 19

method call; it is a potential danger because unwanted method calls may pass through the

firewall without the firewall being able to inspect the SOAP message. The firewall only uses

the designated port mechanism: a binary accept/reject mechanism per defined port.

The power of SOAP is that it refrains from implementation details on any side of the

connection, and it does not invent what already exists (be it CORBA, DOM, EJB or anything).

The only requirement is a mapping from SOAP to the existing component model of the

application. This mapping will be done by the middleware layer as depicted in Figure 2-7, but

the way how this should be done is not standardized, and highly implementation dependent.

5HTXHVW

5HSO\

(UURU

$SSOLFDWLRQ

0LGGOHZDUH

62$3

3DUW\�$ 3DUW\�%

$SSOLFDWLRQ

0LGGOHZDUH

62$3

)LUHZDOO

+773

)LUHZDOO

Figure 2-7: The anatomy of a SOAP call

The Envelope is the top element of the XML document representing the message. The

element may contain namespace declarations as well as additional attributes. If present, such

additional attributes must be namespace-qualified. Similarly, the element may contain

additional sub elements. If present these elements must be namespace-qualified and must

follow the Body element. An envelope has a header section and a body section. The header

may have the attributes actor, encodingStyle, or mustUnderstand, and is encoded as the first

immediate child element of the Envelope element. The body provides a simple mechanism for

exchanging mandatory information intended for the ultimate recipient of the message. Typical

uses of the Body element include marshalling RPC calls and error reporting. An example of a

SOAP message requesting information regarding the whereabouts of a specified TI

employee.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <SOAP-ENV:Body>

 <m:WhereIs xmlns:m="www.telin.nl/whereis">

 <m:employee>Chris Vissers</m:employee >

 <m:format output=”longitude,latitude” />

 </m: WhereIs >

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

20 G I G A P O R T

The SOAP response message might look like

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/”

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <SOAP-ENV:Body>

 <m:ThereIs xmlns:m="www.telin.nl/whereis">

 <m:longitude>52.50</m:longitude>

 <m:latitude>4.95</m:latitude>

 </m:ThereIs>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Xmethods (http://www.xmethods.net/) maintains a list of SOAP-enabled services.

2.4.2 UDDI: Universal Description, Discovery, and Integration

UDDI is intended to be an Internet standard for creating an online business registry in a

platform-independent way, and was introduced in August 2000 by Microsoft, IBM and Ariba. In

May 2001, Ariba resigned and HP became a new UDDI operator. At the high level, the

standard defines White Pages (general business information), Yellow Pages (business

categories, taxonomies), and Green Pages (services offered by a business). Figure 2-8 shows

how these white, yellow, and green pages are intended to evolve over time, until UDDI will be

handed over to an open standardization body at the end of 2001.

Businesses can list and describe themselves in a registry that is maintained by a number of

different companies. Microsoft has begun beta testing its implementation of the UDDI

Business Registry, the same goes for IBM, and for HP it is not exactly clear. Organizations

can register now at http://uddi.microsoft.com/register.asp, which promises no-cost registration

and access to the UDDI repository. Using the registry, service requestors are able to discover

businesses and their services, and to integrate these services.

Currently, a service requestor is able to find a business using business name, business

location, or service name, but also using the different identifications and classifications

(taxonomies). The identifications include the DUNS number, Thomas Supplier ID, or a custom

identifier, and a business or service can be identified via its identifierBag.

The classifications include the North American Industry Classification System (NAICS),

Universal Standard Products and Services Codes (UNSPSC), Standard Industrial

Classification (SIC), IS0 3166 Geographic Taxonomy (country level), GeoWeb geographic

classification (city level), and business or service can be classified via its categoryBag .

G I G A T S / D 2 . 2 . 9 21

This way, the service requestor is able to—both manually and automatically—find a business

situated in the Netherlands, selling products classified as voice recognition software, and

offering a catalog service.

� � �

%XVLQHVV�8QLWV

�
7D[RQRPLHV

'HVFULSWLRQV�RI
6HUYLFHV

&RUSRUDWLRQV

0RUH
7D[RQRPLHV

/D\HUHG
6HUYLFHV

$VVRFLDWLRQV

&XVWRP
7D[RQRPLHV

:RUNIORZ

6HSWHPEHU����� 0DUFK����� 'HFHPEHU�����

:KLWH
SDJHV

<HOORZ
SDJHV

*UHHQ
SDJHV

9HUVLRQ

'XH

Figure 2-8: UDDI’s white, yellow and green pages

The other promises of UDDI are that registration enables a company to

• Conduct business in any industry, around the world, using any platform.

• Look up the Web Services interfaces of business partners and potential partners.

• Discover technical details on working with other Web Services, and post details for its

own services.

• Remove the discovery barriers to participating in the global Internet economy.

The core information model used by UDDI registries is defined in an XML Schema which

defines four core types of information.

1) Business Entity (white pages): Information about the party who publishes information

about a service. Contains businessKey, name, description, businessServices,

categoryBag, and identifierBag

2) Business Service (yellow pages): Descriptive information about a particular family of

technical services. Contains serviceKey, businessKey, name, description,

bindingTemplates, categoryBag,

3) Binding Template (green pages): Technical Information about a service entry point and

construction specifications. Contains bindingKey, serviceKey, description, and

accessPoint.

4) tModels : Descriptions of specifications for services or taxonomies. These form the basis

for technical fingerprints. Binding template data contains references to tModels. These

references designate the interface specifications for a service. Contains name,

description, overviewDoc, categoryBag, and identifierBag.

A new standard, named WS-inspection, has been proposed by Microsoft and IBM to allow an

application to interface with a Web site in order to find out what Web Services a particular

organization offers. Microsoft and IBM are touting WS-Inspection as complementary to

Universal Description, Discovery and Integration, and in a sense it is, but it is also a decentral

competitor of the central UDDI approach. For parties with existing relationships, WS-

Inspection might help to discover each other’s Web Services, whereas UDDI can be used to

22 G I G A P O R T

get a listing for Web Services that match the need of a party as formulated in a query. The

following figure explains how Microsoft and IBM see the relation between UDDI and WS-

Inspection [WSInsp].

Figure 2-9: Relation between UDDI and WS-Inspection

The WS-Inspection specification contains two primary functions: an XML format for listing

references to existing service descriptions, and a set of conventions so that it is easy to locate

WS-Inspection documents.

2.4.3 WSDL: Web Service Description Language

Once a service requestor has found an appropriate service provider in the UDDI registry, the

next thing he wants to know is how the service(s) offered by the provider can be invoked. In

other words, he needs an interface definition of the service specified in a well-known

language. WSDL is such a language.

WSDL is an XML format for describing network services as a set of endpoints operating on

messages containing either document-oriented or procedure-oriented information. Its

specifications are the result of a joint effort from Microsoft, IBM and Ariba. WSDL is an

important factor in the development of SOAP, and it facilitates the interoperability of Web

Services. An increasing number of SOAP implementations support this description language.

Thanks to WSDL, SOAP implementations can self-configure exchanges between Web

Services while masking most of the technical details.

A WSDL document defines services as collections of network endpoints, or ports. In WSDL,

the abstract definition of endpoints and messages is separated from their concrete network

deployment or data format bindings. This allows the reuse of abstract definitions: messages,

which are abstract descriptions of the data being exchanged, and port types which are

abstract collections of operations. The concrete protocol and data format specifications for a

G I G A T S / D 2 . 2 . 9 23

particular port type constitutes a reusable binding. A port is defined by associating a network

address with a reusable binding, and a collection of ports defines a service. Hence, a WSDL

document uses the following elements in the definition of network services:

• Types: a container for data type definitions using some type system (such as XSD).

• Message: an abstract, typed definition of the data being communicated.

• Operation: an abstract description of an action supported by the service.

• Port Type: an abstract set of operations supported by one or more endpoints.

• Binding: a concrete protocol and data format specification for a particular port type.

• Port: a single endpoint defined as a combination of a binding and a network address.

• Service: a collection of related endpoints.

The first five elements are described in a reusable service interface definition, which is

typically defined by industry standards organizations such as RosettaNet, and the last two

elements are described in a service-specific service implementation definition.

Xmethods is a service provider which offers the following services: a Barnes and Noble Quote

Service (returns book price from Barnes and Noble online store, given ISBN), a Pacific Bell

SMS Service (sends a text message to a subscriber on the PacBell SMS network), a Delayed

Stock Quotes Service (20-minute delayed stock quotes), and a Currency Exchange Rates

Service (returns exchange rates between 2 countries’ currencies). Xmethods can be found

using UDDI, and the UDDI registry provides a link to the WSDL file describing the currency

exchange rate service. The WSDL specification is printed in the text box below. We see that

this service basically offers only one simple operation named GetRate. To get the rate, a

message should be send with the name getRateRequest containing the two countries

between which the exchange rate is to be retrieved. Upon receipt of this message, the service

responds with a message named getRateResponse containing the desired exchange rate.

These two messages are encoded in SOAP RPC style. All the above is specified in the

following WSDL file.

<?xml version = "1.0"?>
<definitions name = "XMethods Currency Exchange"
targetNamespace = "http://www.xmethods.net/tmodels/CurrencyExchangeRate.wsdl"
xmlns:tns="http://www.xmethods.net/tmodels/CurrencyExchangeRate.wsdl"
xmlns:xsd = "http://www.w3.org/1999/XMLSchema"
xmlns:soap = "http://schemas.xmlsoap.org/wsdl/soap/"
xmlns = "http://schemas.xmlsoap.org/wsdl/">

<message name = "getRateRequest">
<part name = "country1" type = "xsd:string"/>
<part name = "country2" type = "xsd:string"/>

</message>
<message name = "getRateResponse">

<part name = "Result" type = "xsd:float"/>
</message>
<portType name = "CurrencyExchangePortType">

<operation name = "getRate">
<input message = "tns:getRateRequest" name = "getRate"/>
<output message = "tns:getRateResponse" name = "getRateResponse"/>

</operation>
</portType>
<binding name = "CurrencyExchangeBinding" type = "tns:CurrencyExchangePortType">

<soap:binding style = "rpc" transport = "http://schemas.xmlsoap.org/soap/http"/>
<operation name = "getRate">

<soap:operation soapAction="http://xmethods.net/CurencyExchangeRate/#getRate"/>
<input>

<soap:body use = "encoded" namespace="…" encodingStyle = "…"/>
</input>

24 G I G A P O R T

<output>
<soap:body use = "encoded" namespace = "…” encodingStyle = "…"/>

</output>
</operation>

</binding>
</definitions>

2.4.4 WSFL: Web Services Flow Language

So far, things can be readily implemented (more or less). The next step however is the

definition of the orchestration of, flow of, process between of Web Services, and

unfortunately, things are not so easy to implement here.

Several process modeling languages exist: the business process modeling language of BPMI,

Microsoft’s X-Lang, IBM’s WSFL, HP e-speak WSCL, and RosettaNet’s PIPs. However,

ebXML BPSS probably tries to settle as the most generic modeling language for business

processes. BPML is more focused on standardization of business-internal processes. X-Lang

is focused on workflow modeling to support Biztalk server. The purpose of WSFL is to define

the composition of Web Services (for WSFL, see the discussion in section 2.4.4). And

RosettaNet has no formal process specification language yet, and is focused on the IT and

electronic components industry. We included WSFL in the hype stack because it reuses

WSDL concepts, but it is not really clear—at this moment—which process modeling scheme

is best suited for Web Services. To compare the different process modeling languages, we

make use of the following scheme:

Language Initiator Expressive

power

XML

syntax

Operational

semantics

Public/

private

Vendor

specificity

Concrete

instances

WSFL IBM Medium Yes Yes Public Medium Few

WSCL HP Low Yes No Public Medium Some

XLANG Microsoft Medium Yes Yes Both High Many

BPSS ebXML Medium Yes Yes Public Low Very few

BPML BPMI Medium Yes Yes Private Low No

PIP RosettaNet High No Yes Public Low Many

Table 2-1: Business process modeling language comparison scheme

The scheme shows per business process language the initiator, its expressive power, whether

or not the process definition is specified in XML, whether or not the operational semantics are

described, if it describes public or private business processes or both, how vendor specific it

is, and finally, how many concrete instances of process description we found in this language.

For a more complete comparison of these languages we refer to [Lankhorst02].

The Web Services Flow Language (WSFL) is an XML language for the description of Web

Services compositions WSFL considers two types of Web Services compositions:

G I G A T S / D 2 . 2 . 9 25

• The usage pattern of a collection of services. This describes the way in which these

services together realize a particular business goal, and specifies the execution sequence

of the services’ functionality. In WSFL, this usage pattern is known as a flow model.

• The interaction pattern of a collection of services. This specifies how the individual Web

Services are connected to one another. In WSFL, the model describing the interconnection

of services is known as a global model.

By specifying both the internal flow and the external connections between Web Service

interfaces, WSFL neatly complements WSDL, which describes the service interfaces

themselves, and their protocol bindings. WSFL also relies on an envisioned “endpoint

description language” to describe non-operational characteristics of service endpoints, such

as quality-of-service properties.

WSFL is still in its infancy, but deserves our attention since orchestration and aggregation of

Web Services are a hot topic to build Web Service based applications.

2.5 BPSS: Business Process Specification Schema

In May 2001, ebXML delivered the final version of their Catalog of Common Business

Processes and the Business Process Specification Schema (BPSS). Both documents are

available at the ebXML web site [ebXML].

The Catalog of Common Business Processes is a list of generic business process names that

can be used across various industries. Cross-references are supplied with other common

industry standards including RosettaNet PIPs, Edifact, X12, and xCBL 3.0. It also includes a

limited number of industry specific business processes plus cross references, and

descriptions of common business processes.

In fact, the BPSS is a process specification schema, and there are no real examples of

process definitions yet, but still it is worth to look in a bit more detail into the BPSS.

In the ebXML view, a business process consists of transactions and collaborations. For

example, the business process procurement consists of Create Long Term Contract, Forecast

Component Requirements, Send Planning Documents, Place Order, Ship Materials, and

Arrange Payments. Hence, the specification schema supports the specification of business

transactions and the choreography of business transactions into business collaborations.

Each business transaction can be implemented using one of many available standard

patterns. These patterns determine the actual exchange of business documents and business

signals between the partners to achieve the required electronic commerce transaction. Figure

2-10 depicts the BP layer in relation to the other layers in the ebXML stack.

26 G I G A P O R T

7UDQVSRUW�DQG�5RXWLQJ

7UDGLQJ�3DUWQHU�3URILOH

5HJLVWU\�	�5HSRVLWRU\

%3

&&

'HILQH ,PSOHPHQW

Figure 2-10: ebXML Business Processes (BP) in relation to the other ebXML layers (CC stands for Core
Components, the standard patterns of e-business)

To give an impression of how business processes are modeled in a specification scheme,

Figure 2-11 depicts the global ebXML context for business processes.

G I G A T S / D 2 . 2 . 9 27

Figure 2-11: global structure of the business process specification scheme.

2.6 TPAML: Trading Partner Agreement

In January 2000, IBM submitted a specification for defining and implementing electronic

contracts to OASIS, a vendor-neutral standards body. The XML-based specification, called

tpaML (Trading Partner Agreement Markup Language), now is being handled by ebXML

28 G I G A P O R T

Role

Security properties

Communication properties

Overall properties

Error handling

Identification

Actions

Sequencing rules

Figure 2-12: The main functions provided by tpaML.

Figure 2-12 displays the main functions of a trading partner agreement. Overall properties of

the TPA include its name, starting and ending dates, and similar global parameters. The role

section provides the means to define a TPA in terms of generic roles such as airline and hotel

and to produce a specific instance of the TPA by substituting specific parties for the role

parameters. The identification section specifies the organization names of the parties and

various contact information such as e-mail and postal service addresses. It also optionally

specifies an outside arbitrator to be used for settling disputes. Communication and security

properties include communication protocol (e.g. HTTP, SMTP), communication addresses,

authentication and non-repudiation protocols, certificate parameters, etc.

For each party that can act as a server, there is an action menu which lists the actions that

the other party can request, and various characteristics of those actions. Sequencing rules

specify the order in which actions can be requested on each server. Error handling rules are

various conditions related to error conditions, such as the maximum waiting time for the

response to a request.

It seems that especially the lower layers of the tpaML (communications and actions) have

been overtaken by rapid developments in the SOAP, UDDI and WSDL camp. It looks like

there has been not so much activity around tpaML since the promising start in mid 2000. The

important ideas and concepts have been adopted by ebXML’s CPP and CPA (Collaborating

Protocol Profile and Agreement, respectively).

2.7 XAML: Transaction Authority Markup Language

The Transaction Authority Markup Language defines the transactional interaction among Web

Services, based on interfaces as defined by XA (an interface used to support global

transactions across different transaction manager domains) and by JTA (the JAVA

Transaction API). The initiative was taken by Bowstreet, HP, IBM, Oracle and SUN in October

2000. A business transaction usually requires the co-ordination of the Web Services of

multiple companies (e.g. a vendor, an insurance company, and a carrier) and the single

business transaction requires the commitment of the three underlying Web Services before

G I G A T S / D 2 . 2 . 9 29

the transaction can be executed. XAML provides a mechanism for co-ordinating and

processing the underlying Web Services to complete the entire transaction [XAML].

In the XAML white paper, XAML is presented as the missing link for plug and play e-

commerce, which will precipitate a tsunami of e-commerce activity. However, the XAML

specification is still being written in May 2001, whereas the promise was to deliver the

specification in January 2001, so not much of a tsunami in delivering the specs. When the

specs are finished they will be handed over to a—not yet determined—open standardization

body, but it is not clear how much activity is still going on in XAML.

2.8 Wrapping up

Web Services are an exciting new concept in building and integrating applications. Except for

the top layer of the protocol stack (see section 2.4), which defines the orchestration of Web

Services, all other layers have developed to a level at which they can be readily implemented.

So, from a technology point of view a version 1.0 of Web Services is under reach. Still, a

number of (mainly non-technical) hurdles remain to be tackled before Web Services can really

take off. These hurdles are the subject in the next chapter.

30 G I G A P O R T

 3 Web Services: benefits and obstacles

3.1 Benefits of Web Services

We will now review the benefits of Web Services in more detail. Certainly, each benefit also

has its counterpart, but these are set aside and will be presented in section 3.2.

Promotes interoperability by minimizing the requirements for shared understanding

An XML-based service description (WDSL, section 2.4.3), which may be based on other e-

business XML standards (e.g. RosettaNet, section 1.5), and a protocol of collaboration and

negotiation are the only requirements for shared understanding between a service provider

and a service requester. By limiting what is absolutely required for interoperability,

collaborating Web Services can be truly platform and language independent, and can be

implemented using a large number of different underlying infrastructures.

Enables just-in-time, dynamic integration

Collaborations in Web Services are bound dynamically at runtime. A service requester

describes the capabilities of the service required and uses the service broker infrastructure to

find an appropriate service. Once a service with the required capabilities is found, the

information from the service’s WSDL document is used to bind to it. Dynamic service

discovery and invocation (publish, find, bind) and message-oriented collaboration yield

applications with looser coupling, enabling just-in-time integration of new applications and

services. This in turn yields systems that are self-configuring, adaptive and robust with fewer

single points of failure.

Reduces complexity by encapsulation

A Web Services may be the aggregation of a collection of other Web Services. What is

important is the type of behavior a service provides, not how it is implemented. A WSDL

document is the mechanism to describe the behavior encapsulated by a service.

Encapsulation is key to

Coping with complexity. System complexity is reduced when application designers do not

have to worry about implementation details of the services they are invoking.

Flexibility and scalability. Substitution of different implementations of the same type of service,

or multiple equivalent services, is possible at runtime.

Extensibility. Behavior is encapsulated and extended by providing new services with similar

service descriptions.

Enables interoperability of legacy applications

By allowing legacy applications to be exposed as Web Services, the Web Services

architecture easily enables new interoperability between these applications. Also existing

directory technologies, such as LDAP, can be wrapped to act as a Web Service. A service-

G I G A T S / D 2 . 2 . 9 31

oriented architecture would greatly facilitate a seamless integration between heterogeneous

systems. New services can be created and dynamically published and discovered without

disrupting the existing environment.

Moves from software to services.

Web Services will also change people’s perception of how software should be paid for. Rather

than paying an annual license fee to use an application or a component on an intermittent

basis, people will become more comfortable using a pay-as-you-go model that is akin to the

model used in the utilities industries.

Bridges the gap between implementation and definition

For the first time, the skill sets of the business manager and the application developer will

converge. The manager will be enable to define service interface definitions and business

processes, which can be used directly by the application developer as input for the

implementation definition.

3.2 Hurdles for Web Services

Whereas interoperability, modularity and reuse of components are three of the most

prominent advantages of Web Services, the corresponding drawback is the high

interdependency between essentially black box components. Other hurdles to overcome are

version management, performance, and reliability. This section elaborates on these hurdles

for the application of Web Services in real-world scenarios.

Interdependency

Since the components of an aggregated Web Service can again be (smaller) Web Services,

the aggregated Web Service depends on the proper functioning of the smaller Web Services.

When unexpected results are encountered from the Web Services, it will be a difficult task to

trace the origin of the problem. A Web Service is essentially a black box for which the user

has no way to control or inspect, maybe only by requesting the service and see if it delivers

the desired output.

In software development, tools are available for debugging purposes, but development and

maintenance of distributed Web Services requires a complete new range of debugging and

monitoring tools. For example, when a Web Service X unexpectedly stops its operation, the

services relying on X must have ways to detect that service X is down, rather than trying to

use X and conclude that something went wrong.

Malfunctioning may be caused by a server which is down for maintenance, by an unexpected

change in configuration of the Web Service, by a change in the underlying database structure,

by a new version of a component which is inadvertently installed on the server, et cetera.

To some extent these problems are relieved by dynamic service discovery which enables

finding a replacement service for the inactive or malfunctioning service. Dynamic service

32 G I G A P O R T

discovery systems will be self-configuring, adaptive and robust with fewer single points of

failure, but how to detect that a service is malfunctioning is still an open question.

Error handling is a very important issue in Web Services. The focus is too much on what can

be won when everything operates smoothly, and less on what can be lost if something goes

wrong in the highly distributed Web Service environment.

Semantics

Compared with the choice for a transport protocol or a service definition language, the choice

for a messaging standard is a rather complex one for the service provider. He has the choice

between offering different interfaces for the most important messaging standards in his

business context, or offering only one interface for a specific messaging standard and leaving

the semantic mapping effort to the service requestors. But in either case, mappings have to

be made between the in-house format and the public messaging standard, which can require

substantial implementation efforts for complex standard, such as RosettaNet.

Version and Change Management

New and very clear policies must be developed with respect to version management of Web

Services. A new version might result in new configuration details (see the previous

paragraph), but this is not necessarily the case. Even when no changes are expected in the

offered functionality, a new way must be found to communicate the new version to the service

user, to indicate how long older versions of the service will be supported, et cetera.

Quality Management of the Registries

Ideally, the quality level of the information stored in the registries must be high to enable well-

functioning Web Services. In practice however, the UDDI registry is not supervised and any

party can add entries to the registry. For example, it is not guaranteed that the business’s

listing and technical details regarding HP are really supplied by the HP management. The

situation is comparable to the early registry of Internet domain names: anyone could claim

www.hp.com. In our opinion, the UDDI registries must introduce some kind of supervision with

the intention to check if a party is entitled to add information to the registry, and to validate the

quality of the offered information.

The uddi.microsoft.com site will monitor and audit all publication activity at its site. A level 1

publisher account is used by individual businesses and organizations registering at the

uddi.microsoft.com site. As required by the UDDI operator specifications, these accounts

have restrictions placed upon them in terms of the number of registry entries that may be

published by an individual account. Each level 1 publisher may publish 1 Business Entity with

10 Service Types, maximum. Verification and maintenance of the accuracy of the information

registered within the UDDI registry is the sole responsibility of the publisher.

Performance

Currently, companies can get a handle on their performance issues. Bottlenecks are typically

code that could be optimized, a need for more servers, or a need for a faster Internet

connection. Additionally, companies have come to know their business traffic by the

G I G A T S / D 2 . 2 . 9 33

occurrence of special events, time of year, time of the month, time of the day, etc. Many

companies make plans so that when the heavy periods of traffic arrive, they will have

sufficient resources to handle the load.

But Web Services will introduce new bottlenecks. At the moment, the Internet offers no

guarantees for available bandwidth at a certain moment in time. However, new versions of the

Internet protocol will include the notion of quality of service. Still, there is no way to predict

when heavy times will hit for a specific Web Service. Beforehand, it is unknown what the

upper capacity limit of a Web Service might be. Benchmarking and evaluation tools may have

a new opportunity here, as well as monitoring tools, which report violations in the service level

agreement of a Web Service.

Reliability and trust

When Web Services become popular for outsourcing certain pieces of functionality to

dedicated service providers, it will be unavoidable that the first failures get a lot of attention. A

service requester will start to balance the advantages of outsourcing (no implementation

costs, low maintenance costs) against the reliability and flexibility of a Web Service. So these

two elements are essential for a successful long-term operation of Web Services. The first

Web Services are already mushrooming, but the focus is mainly on presence. Reliability and

flexibility are only a second goal, whereas they should be key issues.

Payment

Who is going to pay for Web Services? Solutions include the micro-payments model for small

Web Services (might be difficult to implement), the advertising model (only applicable for a

special range of Web Services), the subscription model for heavy users, or the package

model for Web Services which are part of a larger business service. Banks providing their

own financial Web Services to charge a bank account with the service costs, would be a

promising step to a solution [Kuebler01]. But the question how to make Web Services

profitable will be a hard one to tackle. We expect that now business oriented web services

emerge, e.g. MySap.com, the subscription model will be a feasible one for these early

adopters.

34 G I G A P O R T

 4 Conclusion

To conclude, we will summarize why we think that Web Services will take off, and what the

most important barriers are for Web Services to become a global success.

4.1 Pro

• Web Services hide the implementation details of the underlying business function. New

promising standards have been developed for service description, discovery and

invocation.

• Integrate (legacy) applications by wrapping them as Web Services. This way, Web

Services might contribute in the hard-to-tackle problem of legacy integration.

• Web Services make real distributed applications possible via open, web-based standards

including XML, SOAP and WSDL. For example, Microsoft is betting the farm on Web

Services, and .NET is the platform that supports these and aims to integrate all

Microsoft’s products. And that is certainly a sign to follow the developments in these areas

with more than average interest.

• Speed of development of Web Service technologies. More and more open standards are

agreed upon and ready to be applied in Web Services. The time line for the hype stack

technologies is shown in Figure 4-1. It shows that most of the Web Service technologies

were conceived in the last three years.

1950 1960 1970 1980 1990 2000 2010

Year

TCP/IP

HTTP

XML

SOAP

UDDI

WSDL

T
ec

h
n

o
lo

g
y

Technology time line

Figure 4-1: Year of introduction of technologies in the Web Services hype stack.

G I G A T S / D 2 . 2 . 9 35

4.2 Con

• A distributed world is also a world full of interdependencies. This might be alleviated by

the fact that Web Services are invoked dynamically, and can be substituted for each

other.

• Although the technology is maturing, ‘social’ aspects are hard to predict. Too low a quality

of data, performance, or reliability are potential dangers for Web Services.

• Standardization bodies should present service interface definitions for their messaging

standards. At this moment there are no reusable interface definitions available, so that

application developers have to do this their own way, with all possible consequences.

• Definition of Web Service processes is still an open issue. Quite a number of process

definition standards are available, but none of them is really suited for application in Web

Services at this moment.

• Web Services struggle with the all-for-free doom of the web. Payment of Web Service will

be more and more an issue as the value of the offered business functions increases. The

old advertisement model of the web does no longer suffice for application to application

communication, so other payment models are needed.

36 G I G A P O R T

References

Web links

[Aberdeen] http://www.aberdeen.com/

[Babelfish] http://babelfish.altavista.com/

[ebXML] http://www.ebxml.org/

[GigaTS] http://gigats.telin.nl/

[RosettaNet] http://www.rosettanet.org/

[SOAP] http://www.w3.org/TR/SOAP/

[TPAML] http://www-106.ibm.com/developerworks/library/tpaml.html

[UDDI] http://www.uddi.org/

[WebMethods] http://www.webmethods.com/

[WSDL] http://msdn.microsoft.com/xml/general/wsdl.asp

[WSDL2] http://www.oasis-open.org/cover/wsdl.html

[WSInsp] http://www-106.ibm.com/developerworks/webservices/library/ws-wsilover/

[XAML] http://www.xaml.org

[xCBL] http://www.xcbl.org/

[XML] http://www.w3.org/TR/2000/REC-xml-20001006

[XML02] http://www.xml.org/xml/industry_industrysectors.jsp

[XP] http://www.w3.org/2000/xp/

[XSL] http://www.w3.org./Style/XSL/

Literature and presentations

[Clark01] J. Clark, Comparison of SGML and XML, W3C,

http://www.w3.org/TR/NOTE-sgml-xml

[Colan01] Mark Colan, Introducing Web Services, IBM, March 2001,

http://www-106.ibm.com/developerworks/speakers/colan/

[Dan01] A. Dan et al., Business-to-business integration with tpaML and a business-

to-business protocol framework, IBM Systems Journal, Vol. 40, No. 1,

2001.

[Gilpin01] M. Gilpin, Integration: Enabling E-Business, 1999

http://eai.ebizq.net/enterprise_integration/gilpin_1.html

[Janssen01] W. Janssen, M. Stefanova, J.W. Koolwaaij, XML: hype or hope?,

GigaTS/D2.2.4, Telematica Instituut, 2000

[Janssen02] W. Janssen et al., State of the art in e-business services and components,

GigaTS/D2.1, Telematica Instituut, 2000

G I G A T S / D 2 . 2 . 9 37

[Koolwaaij01] J.W. Koolwaaij, P. van der Stappen, ERP, XRP and EAI in virtual

marketplaces, GigaTS/D2.2.8, Telematica Instituut, 2000

[Kirtland01] Mary Kirtland, A Platform for Web Services, Microsoft, January 2001,

http://msdn.microsoft.com/library/techart/websvcs_platform.htm

[Kuebler01] D. Kuebler and W. Eibach, Metering and accounting for Web Services,

IBM, 2001.

[Lankhorst01] M. Lankhorst et al., Mapping the e-business landscape, GigaTS/D2.2.10,

Telematica Instituut, 2001

[Lankhorst02] M. Lankhorst, RSD and Web Service concepts, GigaTS internal,

Telematica Instituut, 2001.

[Linthicum01] David S. Linthicum, Enterprise Application Integration, Addison-Wesley,

2000

[Peltz01] Chris Peltz, Interacting with services on the web, HP, March 2001,

http://devrsrc.external.hp.com/devresource/Docs/TechPapers/Eservices/e-

services1.pdf

[Wilkes01] L. Wilkes, Business Integration, A CBDi Forum Report Produced for IBM,

May 2000.

G I G A T S / D 2 . 2 . 9 39

Appendix A - Web Service platforms

XMLbus (Iona)

IONA XMLBus is a complete and easy to use platform for Web Services development and

deployment. This comprehensive Web Services infrastructure enables integration of

applications over Internet, Intranet and Extranet; plus interoperability among distinct

programming platforms such as J2EE and .NET.

http://www.iona.com/products/xmlbus_home.htm

GLUE (The Mind Electric)

GLUE is a platform that simplifies and unifies traditional distributed computing with the

emerging world of Web Services. Using GLUE, you can build, deploy and invoke networked

services. And because GLUE is based on standards such as HTTP, XML, SOAP, WSDL and

UDDI, GLUE interoperates with Microsoft .NET, IBM WSTK, Apache SOAP and other Web

Services platforms.

http://www.themindelectric.com/products/glue/glue.html

CapeConnect (CapeClear)

The CapeConnect Web Services Platform automatically and dynamically generates Simple

Object Access Protocol (SOAP) eXtensible Markup Language (XML) from any J2EE, EJB, or

CORBA component. The generated XML can be exposed as a Web Service on the Internet.

CapeConnect also enables the resulting Web Service to be easily customised and composed

with other Web Services.

http://www.capeclear.com/products/capeconnect/index.shtml

.NET My Services (Microsoft)

As part of the Microsoft® .NET initiative, Microsoft is introducing a user-centric architecture

and set of XML Web Services, code named HailStorm and the formal name .NET My

Services, which is oriented around people, instead of around a specific device, application,

service, or network. They put users in control of their own data and information, protecting

personal information and providing a new level of ease of use and personalization. The

HailStorm services take advantage of the .NET technologies and architecture that make it

possible for applications, devices, and services to work together. These services make user

consent the basis for who can access user information, what they can do with it, and how long

they have permission.

http://www.microsoft.com/myservices/

40 G I G A P O R T

WASP (Idoox)

WASP Advanced contains modules that are necessary for enterprise Web Service

development and deployment. It significantly eases the corporate wide implementation of the

Web Services Architecture. WASP Advanced serves as the secure runtime engine with

support for underlying legacy technologies (EJB, CORBA etc.). Many of these runtimes may

be indexed and referenced by corporate Web Service master index engine - the WASP UDDI.

http://www.idoox.com/products

G I G A T S / D 2 . 2 . 9 41

