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ABSTRACT In forensic applications of speaker recognition it is necessary to be able to specify
a confidence level for a decision that two sets of recordings have been produced by the same
speaker (or by different speakers). Forensic phoneticians are sometimes criticized because they
find it impossible to provide �hard� estimates of the confidence level of their expert opinions.
This paper investigates to what extent the problem can be solved by deploying automatic
speaker verification algorithms, to work alone or to support the work of forensic phoneticians.

It is shown that, although heavily dependent on operating conditions, one of the advantages
of automatic systems is that their performance is in fact measurable. We construct a confidence
measure which takes into account the past performance of the automatic system, the operating
conditions and the probative value of the speech evidence, as well as the non-speech evidence.
It is very important to note that such a confidence measure will never lead to a fully automatic
procedure, since it still requires human input to weigh the non-speech evidence as well as
human explanation of the procedure followed, and, finally, human interpretation. However,
when all conditions are met, this procedure is able to (1) provide an interpretative measure in
the individual forensic case and (2) join together the strengths of the human interpretation of
the non-speech evidence and the automatic interpretation of the speech evidence, so that
finally the joint performance of human and machine is better than the performance of one of
them in isolation.

KEYWORDS speaker verification, Bayesian theory, decision making

INTRODUCTION
Automatic Speaker Verification (SV) and forensic casework have long
been regarded as essentially unrelated disciplines, because the former was
seen as a one-alternative forced choice problem, whereas the latter used
to be presented as an open set identification problem. However, Broeders
(1995) and Doddington (1998) have pointed out that many forensic
cases boil down to the question of whether a set of recordings, some of
which are definitely from the perpetrator and others from a single sus-
pect, do or do not originate from the same speaker. In other words, many
forensic cases can be formulated as a one-alternative forced choice prob-
lem.

One broad class of cases where the �forced choice� paradigm applies,
and where automatic SV techniques might prove to be useful in forensic
work, is in the processing of telephone taps that are made in the investi-
gation of drug trafficking cases. Very often, the perpetrators are foreign-
ers, who speak a language unknown to the police officers, and also to the
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forensic phoneticians. In many cases the police are interested in knowing
how many different speakers are involved in a given set of telephone
taps. Leaving the speaker recognition task to interpreters has been shown
to be problematic, if only because of possible links between the interpret-
ers and the criminals. Such links are to be expected if the case is investi-
gated in a small language community. In these cases a text-independent
SV system might be of great help.

In forensic applications of speaker recognition it is important that one
is able to state a confidence level for conclusions regarding the similarity
between the voices of a known suspect and an unknown perpetrator.
During police investigations confidence levels will be used to weigh the
evidence in setting priorities for investigating specific suspects. Forensic
phoneticians often face the reproach that they cannot provide a �hard�
estimate of the confidence attached to a decision in a specific case. Often
these reproaches come from people who think that machines, specifically
automated speaker recognition systems, are superior to forensic phoneti-
cians, because these machines can provide confidence scores. In reality,
this is not true. In this paper we first explain why it is not straightfor-
ward to come up with a confidence score for a decision with respect to
the (lack of) similarity between two speakers. First, we argue that the
concept of �confidence� in speaker recognition is not easy to define in a
statistically tractable way. One obvious operationalization, namely pos-
terior probability, appears to be self-defeating because it requires knowl-
edge about the a priori probability that the decision is correct. We develop
the arguments for an automatic speaker recognition system, but similar
arguments would apply to the work of forensic phoneticians. Then we
proceed to show how potentially uncertain evidence coming from a hu-
man or automatic speaker recognition system can be exploited in a Baye-
sian decision approach. To this end we propose a new measure, based on
the false accept and false reject rates observed in the past for an automat-
ic system or a forensic phonetician. We have carried out a large number
of simulations to show under which conditions several fallible pieces of
information can add up to a single high-confidence judgement. In this
way we can show that unreliable systems can still help each other to
reach the correct conclusion as long as the evidence they use is independ-
ent.

The data used in this paper derive from two sources. The first source of
data comes from our involvement in the campaign for evaluating auto-
matic speaker recognition systems organized by the American National
Institute for Standards and Technology (NIST). Participants in the NIST
campaign have access to very large amounts of speech recorded over the
telephone, which can be used to train and test speaker recognition sys-
tems. In the research reported here we have also used these data in the
simulation experiments.
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The second source of data pertains to a specific case that was brought
to our attention by a Dutch private investigations bureau. A male person
left obscene messages in the voice mail boxes of female employees of a
large IT company. The calls could be traced to handsets in in-house class-
rooms. Three victims identified the same colleague as the likely perpetra-
tor, but the accused person denied all charges, and agreed to collaborate
in a test in which he read transcripts of two of the messages. The speech
was recorded in one of the classrooms, using the same handset type and
the same voice mail system as during the harassment calls. However, while
the harassment calls were whispered, probably with the intent to sound
�sexy�, the test calls were read with normal voice. Approximately one
month after the test recordings the harassment calls started again, in a
whispery voice and from the same classrooms. Now, the obvious ques-
tion is whether the two sets of harassment calls were made by the same
speaker, and whether this speaker is the same person as the one who read
the transcripts, which is a typical case of a one-alternative forced choice
problem.

This paper is organized as follows: first we describe the text-independ-
ent speaker verification system that we used in the NIST campaign and in
the harassment case. Next, we explain why the usual performance evalu-
ation measures for speaker recognition systems cannot be used as a confi-
dence measure for individual decisions. In the section on Bayesian decision
theory we propose posterior probabilities to assess the confidence in an
individual accept/reject decision and we then go on to explain their �op-
erating instructions� as well as the set of factors which should be ac-
counted for when using posterior probabilities. We then discuss the impact
of the findings for the harassment case. We finish with a discussion of the
way in which (automatic) speaker verification can be of added value in
forensic cases, despite potential uncertainties.

AN AUTOMATIC SPEAKER VERIFICATION SYSTEM
In this section we introduce the A2RT Automatic Speaker Verification
(ASV) system. We will use this system to explain several fundamental
aspects of such systems and to demonstrate the impact of a number of
operational factors on the scores computed by ASV systems, and there-
with on the False Accept Rate (FAR) and False Reject Rate (FRR). The
system described here is the text-independent speaker verification system
that was built for the 1998 NIST Speaker Recognition Evaluation (Przy-
bocki and Martin 1998). The A2RT system appeared to perform reasona-
bly well on the NIST 1998 test data (NIST 1998). Although all results
and figures in this paper are based on experiments with the A2RT system,
the results generalize to all other state-of-the-art ASV systems.

The speech used in the experiments was taken from the Switchboard-2
Phase 1 corpus. Thus, all recordings were made over the US switched
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public telephone network, the language used by the speakers was Ameri-
can English, and the speech was conversational (some test samples main-
ly consist of back channel utterances like yes, erm, huhhuh, etc.).

The A2RT system is a text-independent SV system. Since it is intended
for use with telephone speech, the signals are sampled with a frequency
of 8 kHz. Samples can be either in 8-bit A-law or µ-law format, or in 16-
bit linear format. Parameterization is based on 25.6 ms frames, with a 10
ms frame shift. For each frame 12 LPC cepstra and log-energy are com-
puted; the eventual feature vector is formed by appending the deltas and
delta-deltas of the thirteen coefficients, making for a total of thirty-nine
features. For each client speaker in the NIST data a single model has been
trained. These models consist of a mixture of 128 Gaussian distribu-
tions; therefore, they are known as Gaussian Mixture Models (GMMs).
GMMs do not try to make a kind of phonetic segmentation of the train-
ing speech. Thus, there is no interpretable relation between Gaussian dis-
tributions in the mixture and specific speech sounds.

All state-of-the-art ASV systems build anti-speaker models in addition
to client models. Anti-speaker models can be speaker-specific (in which
case they are also referred to as cohort models) or speaker-independent
(also called world models). World models, in their turn, can be built for
the total population, or for specific sub-populations, like male and fe-
male speakers. The anti-models are used to normalize the scores of the
ASV system for an individual test sample (Lee 1997). If, due to some
distortion caused by the transmission channel or by background noise, a
test utterance does not match very well with the model of the true speak-
er, it is reasonable to expect that this test utterance will also differ from
�speech in general� recorded under undistorted conditions. By relating
the likelihood that an unknown test utterance matches with the model
of a given speaker to the likelihood that this utterance matches with the
world model (or the cohort model) the effect of chance distortions is
diminished. Thus, the scores computed by the ASV are Likelihood Ra-
tios. It is customary to present Likelihood Ratios on a logarithmic scale;
hence the term Log Likelihood Ratios (LLRs). The LLRs are eventually
used to make an accept/reject decision. Anti-speaker models consisting of
128 GMMs have been trained using recordings of a large number of speak-
ers, none of whom is among the �clients�. Separate anti-speaker models
for male and female speakers were built. The anti-speaker model was
trained first, starting from scratch. The speaker models were then adapt-
ed from the anti-speaker model.

All speech is passed through a silence�speech detector before further
processing. For testing, up to 50 000 speech samples with a duration of
thirty seconds are available. The proportion of male to female speakers is
1:1, and the proportion of non-target to target trials is 9:1. Obviously,
this database contains much more speech from many more speakers than
a forensic phonetician could ever hope to process in a realistic experi-
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ment. The size of the database allows us to conduct simulation experi-
ments which will provide results with a statistical reliability far beyond
what can be obtained in experiments with forensic phoneticians.

EVALUATION MEASURES
Intuitively one might think that stating confidence levels for the decision
of an ASV system should be trivial. For all serious ASV products perform-
ance figures are available specifying the False Accept Rate (FAR) and the
False Reject Rate (FRR), Equal Error Rate (EER), Receiver Operating
Characteristic (ROC) curve (Gibbon et al. 1997), or Detection Error Trade-
off (DET) curve (Martin et al. 1997). Thus, one might expect that a
properly built ASV system should be able to produce an objective confi-
dence measure on an absolute scale. If this were true, it would allow the
system to be used by virtually every police officer. Unfortunately, the con-
ventional performance measures cannot be used to derive a confidence
measure that is appropriate for individual cases. This is because all the
measures mentioned above are only valid as averages over large numbers
of genuine and impostor attempts. In fact, these measures originate from
extensive experiments, in which accept/reject decisions are obtained for
large numbers of utterances from true clients and from impostors. The
averages computed over all these observations are fundamentally differ-
ent from individual observations, which can be close to the average, but
also far apart. Of course, in forensic work only individual cases matter.

Figure 1 False Accept Rate (FAR) and False Reject Rate (FRR) as a func-
tion of the LLR threshold value. The dot-dash vertical lines
represent two individual cases with LLR values greater than
the equal error rate threshold.
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A good way to illustrate why some global measure of the performance
of an ASV system is not adequate in forensic work is to look at an exam-
ple. Figure 1 shows the proportions of false accepts and false rejects of
our text-independent SV system as a function of the threshold set in
terms of the log-likelihood ratio (LLR) score of test samples. In addition,
two individual cases are depicted. Both are in the range of LLR values
where the case would probably be accepted as the true speaker (since both
are beyond the threshold, which, for this example, is arbitrarily set to the
LLR value that corresponds to equal probabilities of false reject and false
accept). However, it is obvious that the cases are very different. Even if
case #1 has a �positive� LLR score, it is only marginally so, whereas the
LLR score for case #2 makes a false accept very unlikely (but not impos-
sible). Therefore, the confidence that one should attach to an accept/
reject decision of this system is certainly different from its EER (or what-
ever conventional average performance measure is provided by the sys-
tem manufacturer). If anything, we need a combination of the FAR and
FRR (or any other average performance measure) and the LLR assigned
to the test utterance, which together give an indication of the confidence
of an accept/reject decision. Even for a seemingly mediocre system (with
an EER of about 15 per cent) the decision for case #2 seems to be highly
reliable.

The example in Figure 1 might suggest that it should be possible to
base confidence measures in individual cases on the LLR value proper.
This is the more so because the likelihood ratio is introduced to normal-
ize the otherwise unscaled raw likelihood values (Lee 1997). One might
be tempted to assume that likelihood ratio scores are measures on a ratio
scale; unfortunately, in actual practice, LLRs are measures on an ordinal
scale (Stevens 1951).

There are two reasons why the LLRs produced by a speaker verification
system must be interpreted as measurements on an ordinal scale:
· The LLR values output by an ASV system not only depend on the

characteristics of the test sample(s), but also on the reference models
used to normalize the scores. The choice of reference models de-
pends on a large number of design decisions. All these decisions will
affect the LLR score assigned to a test sample. For ASV systems that
come with built-in world models, it may not always be known in
detail what the reference models are. For systems that build cohort
models, the client models (and therefore also the LLR scores) will
always depend on the cohort database available at the time of en-
rolment.

· Even if it is known with what kind of speech the reference models
have been trained, their actual impact on the LLR score depends on
many implementation details, which are often considered as infor-
mation proprietary to the system manufacturer.
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Of course, a laboratory involved in forensic casework could build a cus-
tom SV system, so that both the reference models and all relevant imple-
mentation details are known. Still, this does not promote the LLR values
to the status of scores on a true ratio scale. There remains a long list of
additional factors that have an impact on the LLR scores. The confi-
dence interval of an identity statement can only be estimated reliably if
the impact of all factors that are relevant in a specific case can be quanti-
fied. The factors that intuitively seem to have most impact on the per-
formance of a (human or automatic) speaker recognition system are
discussed in the section on operating conditions below.

BAYESIAN DECISION THEORY
In order to be useful in real cases it is necessary to �transform� the result of
forensic speaker recognition expertise or of an ASV system into evidence
which can be used in the investigation. To that end, we need an indica-
tion of the reliability (or confidence) of the accept/reject decision with
reference to the conditions of a particular case. If �subjective estimates� of
forensic phoneticians or the raw numbers produced by an ASV system
cannot be used as straightforward confidence measures, we have to look
for a better solution.

One (but certainly not the only) way to estimate the confidence to be
attached to an accept/reject decision in speaker verification is to compute
posterior probabilities in the Bayesian sense. Posterior probabilities have sev-
eral advantages. First, information about past behaviour of the SV system
under similar conditions can be taken into account. In addition, posterior
probabilities are transparent measures that can be interpreted by humans.
Figure 2 shows graphically how the forensic phonetic information must be
used in a specific case. There are three types of information, namely previ-
ous experience with the performance of the (human or automatic) speaker
recognition system, the speech evidence for this specific case, and independ-
ent (non-speech) evidence. (The figure does not show the complexity of the
non-speech evidence.) To compute posterior probabilities, and to make ac-
cept/reject decisions these three information types must be converted into
quantitative measures. These measures are, respectively:
· FAR and FRR are the false accept rate curve and the false reject rate

curve of the speaker recognition system under operating conditions
similar to those applying in the case at hand. If we denote those
conditions as C, FAR and FRR can be defined as

FARC = P(accept|non-target, C)
FRRC = P(reject|target, C)

Note that FARC and FRRC are not just �hard decision� values, but
functions of a threshold in terms of log likelihood ratio, as depicted
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in Figure 1. For example, FARC (T) is the False Accept Rate under
condition C with threshold T. For automatic systems FAR and FRR
can be computed by means of simulations with pre-recorded speech
in a database which reflects the relevant conditions. For human ex-
perts meaningful estimates of FAR and FRR are much more diffi-
cult to obtain.

· LLR value of the speech evidence. This is the output of the scoring
module of the ASV system when testing the hypothesis that the sus-
pect is the same person as the wanted criminal (or the genuine cus-
tomer in civil applications).

· P(target) is the prior probability that the suspect is the wanted crim-
inal, without taking the speech evidence into account, but based
only on independent evidence or counter-evidence. In forensic cases
this kind of information is provided by the investigators. In the court-
room the independent evidence is presented by the prosecutor and
evaluated by the jury or by the judge (depending on the legal sys-
tem). In civil applications of ASV independent information on the
prior probability that an identity claim is true can come from the
match between the previous behaviour of the client and a new trans-
action that is attempted (Boves 1998). To simplify the equations we
define P(target) as

P(target) = P

It is important to note that in this approach both the SV system and the
(interpretation of) the independent evidence are fallible. So neither the
SV system nor the investigator weighing the independent evidence can
claim a 100 per cent confidence in decision making. However, using the
scheme of Figure 2 makes it possible to exploit the evidence gathered by

Figure 2 Three important types of input must be taken into account to
compute the posterior probabilities
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both the SV system (speech evidence) and the investigator (non-speech
evidence).

When all three inputs are available, we can compute the posterior error
probabilities. Given that we accept the null hypothesis H0 (the suspect is
the same as the criminal), the error probability is equal to (with P, C,
LLR, FAR, and FRR as defined above):

and given that we reject the null hypothesis, the error probability is equal
to:

From a forensic phonetics point of view P is unknown, since it will be
provided by the investigator, based on data which are independent of the
actual phonetic research. Therefore, the best thing we can do to get in-
sight into the meaning of the objective performance measures FARC(LLR)
and FRRC(LLR) is to take the ratio between the two posterior error prob-
abilities as a function of P. We define this ratio R as:

And it should be noted that R is a function of the triple (C, LLR, P). This
measure R places LLR in its real context, depending on the performance
of the SV system in condition C and with knowledge of the a priori
independent evidence P concerning the hypothesis under test. To give an
impression of the meaning of R an example may help: if
P(error|reject,C)=0.8 and P(error|accept,C)=0.1 we are 8 times more
likely to make an error if we reject than if we accept the charges against
the suspect. For the two cases shown in Figure 1 the ratio R as a function
of P is plotted in Figure 3. If we take R=1 as the threshold for accepting
H0, for case #1 the judge or jury can only condemn the accused if, prior
to receiving the speech evidence (i.e. based on evidence that is independ-
ent of the speech material under investigation), they are more than forty-
two per cent sure that the suspect is the perpetrator. However, in case #2
a P value as low as three per cent is enough to convict the suspect.

One can interpret the ratio R for a given P value on a verbal scale, as in
Table 1. Two comments must be made on this verbal scale. First, the
posterior probabilities � or, in other words, our best approximation of
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the confidence to be attached to the accept or reject decision � are essen-
tially dependent on the prior probability. Therefore, R is really a function
of the prior probability P(target). However, the measure R allows us to
get a feeling for how big the risk is that the judge makes an erroneous
decision when he rejects the hypothesis H0, given the belief that we have
in independent evidence. Second, very big (and very small) values of R
can only be obtained if the tails of the target and non-target score distri-
butions can be estimated accurately. This, in turn, requires a very large
number of cases, numbers which can only be obtained in simulation ex-
periments on databases with large numbers of test utterances. In most
experiments the number of cases will limit the useful range of LLR to the
interval (LLR�, LLR+), with FRRC (LLR� ) = a and FARC (LLR+) = a,

Table 1 Verbal scale for the ratio R

Interval Decision Confidence

R<10�3 reject very high
10�3£R<10�2 reject high
10�2£R<10�1 reject moderate
10�1£R<100 reject low

100£R<101 accept low
101£R<102 accept moderate
102£R<103 accept high
103£R accept very high

Figure 3 R as a function of P(target) for the two cases shown in Figure
1. Case #1 will be accepted if P(target) > 42% and case #2
will be accepted if P(target) > 3%
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and a a small percentile value. For LLR< LLR� we assume R = 0, and for
LLR> LLR+ we assume R = ¥.

The Bayesian approach to combining prior probabilities and actual
scores derived from pieces of evidence (speech samples) requires that P
and LLR are independent. Thus, eventually P must be estimated by the
investigator in a forensic case, not by the forensic phonetician. If the
latter were to bring P to bear, the equivalent of the LLR score assigned to
a set of speech samples on the basis of the speech only could no longer be
considered unbiased.

THE OPERATING CONDITIONS
To be able to apply automatic speaker verification in real-world forensic
cases, we first need to chart the performance of the SV system in several
conditions. To that end, we must obtain estimates of FRRC(LLR) and
FARC(LLR) in the condition(s) of interest. Each condition is determined
by a number of factors which may affect the performance of a (human or
automatic) SV system. Research over recent years has addressed a number
of factors which affect the performance of virtually any SV system. In
the following subsections we discuss the most obvious factors, not neces-
sarily in order of importance. The first three factors are related to the
speaker him/herself, the following three to the acoustic background and
transmission channel effects, and the last three to the design of the SV
system. Most of the results referred to below are based on experiments
with Switchboard data. Virtually all are based on experiments with large
databases in which the identity of the speakers of all samples was known.

Speaker
Speech is behaviour, and is therefore characterized by both inter-speaker
variation and intra-speaker differences (Boves 1998). Speaker verifica-
tion makes use of the inter-speaker differences, but the intra-speaker var-
iation can mask those inter-speaker differences. Thus, one of the major
issues in Automatic Speaker Verification is how to cope with intra-speak-
er variations. Most state-of-the-art SV systems use statistical speaker
modelling (e.g. Hidden Markov Modelling) together with speaker de-
pendent score normalizations, which to some extent deals with the intra-
speaker variation problem.

Doddington et al. (1998) investigated if there are differences in the
recognizability of different speakers based on test data used for the NIST
1998 speaker recognition evaluation. They found that so-called goat
speakers (unreliable applicant speakers with a high false reject rate) have
the largest performance effect (25 per cent of the most goat-like speakers
contributing 75 per cent of the false reject errors). However, the a priori
detection of these speakers is still an open question. Moreover, goaty
behaviour may be due to a combination of speaker characteristics and the
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recording conditions of the training speech. If only one or two record-
ings are available to enrol speaker models, and all enrolment sessions
come from a very noisy environment, one can have little hope that the
speaker models are very accurate.

Gender
Gender is among the most obvious factors that one would expect to
affect speaker recognition. Indeed, experiments on databases containing
speech of both genders invariably show that cross-sex confusions are rare.
Also, with few exceptions it has been found that the performance of
modern ASV systems is as good for female as it is for male speakers.
Figure 4 shows the FRR and FAR curves for the two sexes obtained with
the A2RT system. Clearly, the curves are virtually identical. This means
that in our SV system the LLR scores are essentially independent of the
gender of the speaker. It should, however, be emphasized that each par-
ticular SV system should be checked for gender dependence in perform-
ance due to, for example, choices made in the design of that SV system.

Language
Little is known about the impact of language on the performance of SV
systems. For example, what happens if the training speech of a speaker is
in his native language, but the test speech is in another language? Or can
an SV system designed using one language be applied to a second lan-
guage with the same performance? For text independent speaker identifi-

Figure 4 False Reject and False Accept Rates as a function of the LLR
threshold value for female and male subjects
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cation using telephone speech it has been shown that the impact of lan-
guage mismatch between training and testing data is minimal, some-
times less than 0.5 per cent (Durou and Jauquet 1998). It should be
noted that these results are obtained on the PolyCost database contain-
ing European languages only.

Handset
All experiments with the Switchboard data have shown that the type of
handset microphone has an enormous impact on error rates. The NIST
evaluations show that SV performance on carbon button recordings is
significantly worse than on electret recordings. This is due to the signifi-
cantly larger degree of variability exhibited by carbon button microphones.

Also, when the microphone type is the same (ST) for training and for
testing, one might expect better performance results than when the mi-
crophone type differs between training and testing recordings (DT). (See
Figure 5.) Performance degradation is typically a factor 3 or more when
going from the ST to the DT condition (Reynolds 1996). Most state-of-
the-art SV systems use some kind of channel normalization technique,
like cepstral mean subtraction. Despite such techniques, a performance
gap still exists between the ST and the DT condition, because these tech-
niques only remove first-order linear distortions (while carbon button
microphones are notorious for their non-linear distortions). The prob-
lem with carbon button microphones is likely to disappear, as old fash-
ioned handsets are replaced by modern devices.

Figure 5 False Reject and false Accept Rates as a function of the LLR
threshold value for test segments with the same handset type
(ST) or a different handset type (DT) as used during training
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Recording platform
Especially in forensic casework the recording platform may be impor-
tant. Often recordings are delivered on audio cassette or other analogue
media, for example answering machine tapes. It is very difficult to pre-
dict the impact of analogue recording platforms. The best situation would
be to have the same recording platform for training and test speech,
which is possible in, for example, phone tap recordings. Traditional an-
alogue telephone tapping devices are increasingly being replaced with
advanced digital facilities, with calls being stored in a digital format
(Broeders 1995).

Signal quality
Signal quality can vary substantially within a set of test utterances. More-
over, �signal quality� is a multi-dimensional concept, of which signal-to-
noise ratio is just one aspect. Signal quality is determined by the acoustic
background, the quality of the transmission channel, and the behaviour
of the speaker. If the acoustic background noise level is high, most speak-
ers react by raising their voice level, which affects various characteristics
of the speech signal. This is the well known Lombard reflex (Junqua
1996). The ways in which speakers react to distortions in the transmis-
sion channel are more difficult to predict. In other situations, the level of
the speech signal can be low, for example due to the fact that the utter-
ances mostly contain whispered speech, murmuring, erm-sounds or oth-
er back-channel utterances. The effects of signal quality on performance
are not so evident and consistent over different SV systems as they are for
the various handset conditions. Also signal quality is difficult to quanti-
fy, except for the well-known signal-to-noise ratio (SNR): for low SNR
speaker verification performance drops significantly.

Number of training sessions
It is obvious that speaker models are more powerful if they include a
better estimate of intra-speaker variability. Under normal conditions reli-
able estimates of intra-speaker variability can only be obtained by means
of multiple recording sessions, preferably spanning a considerable period
of time, and made at different times of the day on different days of the
week. In most real applications one must be satisfied with a small number
of enrolment sessions.

Recently, attempts have been made to induce intra-speaker variation in
a single enrolment session by requesting that the speakers use different
speaking styles. As yet, no definitive results of this experiment are availa-
ble (Karlsson et al. 1998).

Amount of test data
Not surprisingly, a longer duration of the test utterance produces better
performance. Typically, ten times more testing data halves the equal error
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rate of the SV systems participating in the NIST speaker recognition eval-
uations of 1997 and 1998 (Przybocki and Martin 1998).

Anti-speaker modelling
Anti-speaker modelling (be it world modelling or cohort modelling) has
been shown to work well in practice for normalizing the speaker model
likelihood given the observations. A study of several kinds of anti-speaker
modelling (Rosenberg and Parthasarathy 1996) reveals that cohort mod-
elling performs only marginally better than world modelling, and the
performance impact of the number of speakers used for training of the
world model or the number of cohort models is limited.

Ideally, the speech used to train the speaker model and the speech used
to train the anti-speaker models should be recorded under exactly the
same conditions. The better this match is, the better the normalizing ef-
fect by the anti-speaker likelihood. For this reason, several SV systems use
gender and/or handset dependent world models.

Additional factors
A long list of factors which may or may not affect the performance of SV
systems can be made. Some of these factors have been hypothesized in the
literature, but not systematically investigated. Other factors are newly
introduced, like the effects of source coding in digital cellular telephony.
Kuitert and Boves (1997) investigated the effects of GSM coding on the
performance of an automatic SV system; they found that the codec per se
has little impact on the performance.

One factor which has received considerable attention is voice pitch. While
pitch can contribute to speaker recognition, it is effectively annihilated in the
conventional cepstral coefficients that are used as acoustic features in most mod-
ern ASV systems. Moreover, average pitch has been shown to exhibit a relatively
large intra-speaker variation (Kraaijeveld 1997).

It is practically impossible to chart the influence of all factors that may
affect SV performance. Fortunately, often logical reasoning suffices to
convincingly argue that a specific factor can hardly be relevant, because it
does not affect the features in a given SV system (e.g. the case of voice
pitch with cepstral features). For example, if there exist differences in
speech rate between the suspect�s recordings and the perpetrator�s record-
ings � which is not unlikely � it can be reasoned that a SV system using
HMMs is rather insensitive, because an HMM can adapt its state se-
quence to changing speech rates.

Prohibitive factors
It should be noted that there are also factors which make the use of
(automatic) SV systems impossible. The most extreme cases are those
where the perpetrator uses recordings which are digitally altered, for ex-
ample by applying one of the better voice conversion systems (Genoud
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and Chollet 1999). If there is reasonable suspicion that a criminal has
used voice conversion software, one should refrain completely from us-
ing SV in the investigation or as evidence in court. (But in such a case the
type of voice transformation can probably serve as evidence.)

Intentional vocal disguise is another factor that may invalidate speaker
recognition, although this is much less obvious. Depending on the dis-
guise technique and its impact on the acoustic features in an SV system,
disguise may or may not affect the performance. Most probably, this
should be investigated on a case-by-case basis.

As yet there is no technology that is able to reliably detect disguise, or
the use of digital voice conversion techniques.

THE HARASSMENT CASE
We can now revisit the harassment case, introduced above. In some senses
it seems to be relatively easy: the recordings of all three sets of harassment
calls can be traced to exactly the same recording environment. In addi-
tion, in both sets of questioned recordings the speaker used a whispery
voice. Thus, one would expect that these are optimal performing condi-
tions for an automatic speaker verification system. Of course, this intui-
tive reasoning assumes that the relevant intra-speaker variability is not
increased significantly because of the non-normal way of speaking. In
addition, other potentially relevant factors may not make for a simple
case. Since the texts spoken in the two sets of recordings differ, we are
obliged to use text-independent SV methods, which are known to be less
powerful than text-dependent methods.

We had three recordings available on which to base a judgement. The
speech recordings came on CD-ROMs in MS-WAVE format (stereo,
44.1 kHz sampling rate and 16-bit per sample). The total duration of
the first set of harassment calls was 96.4 seconds; the second set of har-
assment calls had a total duration of 132.3 seconds. The total duration
of the read speech recorded from the suspect was 81.9 seconds. We decid-
ed to use all the material to enrol three client models, which will be
referred to as:
· PERP1 for the first set of harassment calls (three calls with sponta-

neous, whispered speech; call durations 36.7, 25.9, and 33.8 sec-
onds),

· PERP2 for the second set of harassment calls (three calls with spon-
taneous, whispered speech; call durations 52.7, 36.2, and 43.4 sec-
onds),

· SUSP for suspect�s calls (read transcripts of the first two calls from
PERP1, plus one spontaneously spoken denial of the accusation, all
with normal voice; call durations 22.9, 18.5, and 40.5 seconds).

After manually removing the standard answering machine messages (such
as �message for�, �received on�, and �end of message�) and automatically
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removing silence from the utterances there remained 22.8 seconds of speech
in PERP1, 32.0 seconds in PERP2, and 34.7 seconds in SUSP. Because
PERP1 and PERP2 are spoken with a whispery voice, the silence�speech
detector also removed parts of the whispery speech.

For the speaker verification task we used A2RT �s SV system as described
above. The first task is to estimate the system�s FAR and FRR curves in
the appropriate conditions. To this end, we trained the speaker models
on only thirty seconds of speech recorded in one session; test utterances
were also thirty seconds long, in conformity with the conditions of the
case. (Thirty seconds matches more or less with the total duration of the
PERP1, PERP2, and SUSP recordings). Since we were not in a position
to record large numbers of (male) speakers under the exact same condi-
tions that applied in the case, we used 2642 utterances from an existing
corpus: the Switchboard-2 corpus. We used 2347 non-target utterances
and 295 target utterances, and a set of 250 target models. All targets
were male speakers, speech for training and testing for the true speaker
attempts was collected using the same phone number and with the same
handset type, as in the case under investigation where the suspect�s speech
was recorded from the same classroom and with the same handset type
as during the harassment calls.

The only mismatch factors are (1) language (Switchboard is English,
the case is in Dutch); (2) the recording platform (the detailed specifica-
tions of the company voice mail system used to record the three sets of
calls were not available to us. Thus, we do not know whether the signals
were treated by some kind of coding mechanism to reduce the number of
bytes needed to store messages in the voice mail boxes); (3) the Switch-
board data base contains spontaneous speech with a normal voice, while
the case data is partly spontaneous, partly read speech, partly whispered,
and partly with normal voice.

Subsequently, we obtained LLRs for the speech used to train PERP1
matched against SUSP and PERP2, for the speech used to build SUSP
matched against PERP1 and PERP2, and for the speech underlying PERP2
matched against PERP1 and SUSP (see Figure 6). Table 2 shows which
P(target) suffices to accept H0 and Table 3 shows the ratio between
P(error|reject) and P(error|accept) when P(target ) is 50 per cent. Not
surprisingly, the match between PERP1 and PERP2 was very close (low P
values in Table 2 and high R values in Table 3). In fact, the LLR value of
this case falls in the interval (LLR+; ¥), thus resulting in R = ¥. Also, the
matches of SUSP with PERP1 and PERP2 were good enough to accept
H0 with high confidence.

The matrices in Tables 2 and 3 are not necessarily symmetrical, because
in general a high probability for the test data given a model of the obser-
vations on the training data does not necessarily imply an equally high
probability for the training data given a model of the observations on the
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Table 2 P(target) value needed to obtain R=1, with fixed LLR and C

P(target) Trained on

PERP1 SUSP PERP2

Tested PERP1 <0.1%    0.2% <0.1%
on SUSP    3.8% <0.1%    4.0%

PERP2 <0.1%    0.2% <0.1%

Table 3 R value for P(target) = 50%

R Trained on

PERP1 SUSP PERP2

Tested PERP1   ¥  4.0 × 102   ¥
on SUSP 3.3 × 102   ¥ 2.9 × 102

PERP2   ¥  0.2%   ¥

Figure 6 R as a function of P(target) when PERP1 is used as training
speech and SUSP is used as test speech. The circle is the operat-
ing point where R=1
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test data. It is the �quantifying� effect of data modelling which causes the
asymmetry in the distance measures.

However, we should not commit ourselves to the figures in Tables 2
and 3 because we could not solve the three mismatch conditions men-
tioned above. For example, it is possible that the large difference between
our non-target speech and the test speech (FARC(LLR) = 0) is due to
unknown but systematic effects in the recordings of the perpetrator and
the suspect. Even if that may be difficult to imagine, based on the limited
knowledge that was available to us we cannot completely rule out this
possibility. Recall that we were not given any information on the wave-
form coding employed by the voice mail system used to record all test
utterances. Also, all test calls were recorded under the same acoustic con-
ditions, with the same type of handset; both the room acoustics and the
handset in the test speech may have been idiosyncratic, thereby adding to
the difference between the LLRs computed for (non-matching) impostor
trials and the (matching) test trials. Of course, had the case been impor-
tant enough to warrant the costs, we could have recorded a sufficiently
large and varied set of additional speakers to train the LLR distributions
of genuine and impostor trials in a matching condition. However, such
cases are the exception, rather than the rule.

In the case under analysis we had no information to estimate an inde-
pendent prior probability of the speakers in the three sets of recordings
being the same person. Careful and detailed phonetic analysis yielded a
long list of speech features in the three sets of recordings that were very
similar, yet sufficiently exceptional to consider them as idiosyncratic.
However, even if such phonetic information cannot be brought to bear
on the speaker models of our SV system in any direct and explicit way, it
is still very dangerous to consider it as independent evidence. Both the
phonetic analysis and the speaker models of the SV system are based on
the same speech evidence, and as long as it is unclear to what extent they
may be exploiting the same information in the speech signal, it is unsafe
to regard the outcome of the phonetic analysis and the outcome of the
automatic analysis as mutually independent.

The outcome
The eventual decision in a forensic case has very little to say about the con-
fidence and truth of the forensic phonetician�s opinion about the identity
of the speakers who produced two sets of speech samples. This is so because
the final decision may have been based almost completely on other evidence
(or in the case of a dismissal on formal grounds, on the way the case was
brought before the judge). Yet it is always interesting to know the final
verdict. In the case at hand there never was one. The suspect maintained his
denial, and the harassment calls stopped after the second set used in this
study. (Maybe the threat of hard scientific proof alone was enough to stop
the caller.) The company therefore dropped the case.
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A SIMULATION EXPERIMENT
We have already made clear that both the investigator and the automatic
speaker recognizer are fallible. The main question in this section is how
these two can be used to combine the probative values of speech and
non-speech evidence together, to achieve more reliable decision making
in court. We use our Bayesian decision paradigm to investigate this and
choose a subset of the NIST�98 data as experimental data, namely those
cases with male speakers, thirty seconds of test data, and two minutes of
training data collected in two sessions. Ten thousand utterances are used
to compute the FAR and FRR curves of the SV system, and 15 000 utter-
ances are used to do the actual testing.

These test utterances we used in a simulation experiment: for each of
the 15 000 test utterances the P(target) value (the prior probability that
the suspect is also the perpetrator) is given by an imaginary investigator.
One way to create this imaginary investigator with a semi-random out-
put value for P(target) is as follows: in case the suspect is also the perpe-
trator the P(target) value is a random selection from the uniform
distribution over the interval (1 � p, 1), with p a real value between 0.5
and 1.0, and in the opposite case it is a random selection from the uni-
form distribution over the interval (0, p). So the larger p, the worse the
quality of the P(target) value supplied by the investigator. If p varies
from 0.5 to 1.0, the total error rate of the imaginary investigator (de-
fined as TER = (FAR + FRR)/2) is equal to  2p � 1/2p, with the accept/
reject threshold set to P(target) = 0.5. Then, per test utterance we com-
pute the ratio R = P (error|reject, C)/P (error|accept, C) as a combina-
tion of investigator input and the input of the ASV system, with the
semi-random values for P(target), the LLR value of the test utterance and
the FAR and FRR curves of the SV system as input, and R = 1 serving as
accept/reject threshold value. So, finally we obtained 15 000 R values
and thus 15 000 accept or reject decisions which take into account both
speech and (in this case, simulated) non-speech evidence.

In Figure 7 the total error rate of the combination of investigator and
ASV is plotted against the total error rate of the investigator to show
what ASV can add to the opinion of an investigator. Two conditions are
plotted, one for test segments with the same handset type (ST) as used
during training, and one for different handset type (DT). The horizontal
lines are the stand-alone performances of the SV system in the two con-
ditions. For example, for the ST condition the ASV TER is 9.6 per cent
and if the TER of the investigator is in the range of 3.6 per cent to 40.5
per cent ASV can bring these TERs down to between 3.6 per cent and 9.6
per cent respectively, so giving up to a factor 4.2 reduction in TER. Table
4 shows in which intervals a combination of the investigator and ASV
gives a real �performance gain�. Only if the investigator TER is lower
than 3.6 per cent does addition of the SV system (with a TER of 9.6 per
cent) start to be �counterproductive�. However, the better the SV system
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Table 4 Break-even points in % for P(target) based on Figure 7

Condition TER Jury better than Combination ASV

of ASV combination better than better

standalone both ASV and than

investigator combination

ST 9.6% 0.0 � 3.6 3.6 � 40.5 40.5 � 50.0
DT 38.7% 0.0 � 8.0 8.0 � 49.5 49.5 � 50.0

performs, the smaller the interval where ASV has a counterproductive
effect on the investigator�s input and the larger the interval where ASV
really helps the judge in taking a decision.

CONCLUSIONS
In this paper we have analysed the factors that have an impact on the log
likelihood ratio scores produced by automatic speaker verification sys-

Figure 7 The added value of ASV. The thick lines show the Total Error
Rate for the combination of investigator and ASV as function
of the Total Error Rate of the investigator only.
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tems. It has been explained why these scores are measurements on an
ordinal scale. Therefore, the absolute values of the scores cannot be used
as the sole data to attribute a formal confidence value to the decision to
accept or reject the test sample as coming from the claimed speaker. Au-
tomatic SV systems can only be used in forensic field work to substitute
the �subjective� confidence score attributed to an opinion by a forensic
phonetician if three crucial inputs are available: the performance of the
automatic system in the appropriate condition must be known (in terms
of false accept and false reject rate), the probative value of the speech
evidence (in terms of log likelihood ratio), and that of the non-speech
evidence (the prior probability that the suspect is also the perpetrator). A
combination of these three inputs has led to a measure R which can be
interpreted intuitively, is robust in different operating conditions, includes
self knowledge of the SV system and integration of independent evidence,
and contributes to better decision making based on both speech and non-
speech evidence in forensic casework.
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