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ABSTRACT
One of the most useful applications of Confidence Measures
(CMs) in Automatic Speech Recognition systems is early de-
tection of incorrect recognition hypotheses. A purely acoustic
basis for such a CM is particularly important when tracking
errors resulting from Out of Vocabulary speech, background
noise or keyword substitution. A commonly taken approach is
to compute scores on subword units of the hypothesized
words and combine them in a word score. This paper investi-
gates the assumption that some subword types contain
stronger distinctive properties than others. Therefore, their
scores ought to have a higher contribution in the eventual
word scores. Experiments in a connected digit recognition
task showed a relative Confidence Error Rate improvement of
6% on word level and 11% on sentence level in comparison to
the baseline CM, with equal contribution of the phone confi-
dence scores.

1. INTRODUCTION

For user friendly human-machine dialogs reliable estimates of
the confidence with which a user utterance has been recog-
nized are essential. This is as true for connected digit recogni-
tion (CDR) as it is for other tasks using speech input. Digit
strings make for a relatively simple recognition task, because
the vocabulary is rather small. On the other hand, in recogniz-
ing digit strings the linguistic constraints are minimal. There-
fore, there is an obvious need for confidence measures which
are almost completely based on acoustic information.

The ideal word-based acoustic confidence measure is without
doubt the posterior acoustic probability:

(1)

with W the hypothesized words and X the sequence of acoustic
feature vectors. By definition, it is impossible to know a poste-
rior probability in advance, so usually (1) is rewritten in the
form of prior probabilities, by making use of Bayes’ rule:

(2)

For recognition purposes, where it is the goal to find the words
W that maximize P(W|X), it is sufficient to find the W that
maximize the numerator of the right hand term of (2). Besides
the fact that the denominator is independent of W, it is nearly
impossible to collect sufficient training data to make a fair
estimation of P(X), so it is usually not considered. An impor-
tant consequence, however, is that the resulting approximation

can no longer be interpreted as an indication of the probability
that the recognition result is correct. This is a problem when
estimating a score for the acoustic confidence, which one
would like to be an absolute and context independent value.
The problem has been approached in several ways, like [1] in
which a discriminatively trained hybrid HMM/ANN system
was used to estimate the posterior probabilities directly. In this
work we will use a Likelihood Ratio (LR) based method,
which provides for an internal normalization of P(X):

(3)

Where W is the hypothesis that any word(s) but W were real-
ized. Since our current interest is in an acoustic confidence
measure, we restrict ourselves to the left factor of the right
hand term of (3) in the remainder of this paper.

In order to estimate the probability P(X|W ), it is required that
a so-called anti-model is trained for every unit W. In the lit-
erature a number of approaches are described for selecting the
speech material on which to train the anti-models (e.g. [4],
[6]). Usually anti-models are trained on tokens that caused
substitution errors. Quite naturally, these tokens are in some
sense acoustically close to the words that should have been
recognized.

In this paper we introduce a new way of selecting the speech
for training the anti-model, that is based on a combination of a
data driven and a rule based approach.

In large vocabulary Automatic Speech Recognition (LV-ASR),
confidence scores for words must be derived from the contri-
butions of the subword units. Although it would be possible to
compute word level confidence scores for digits directly, we
want to derive our scores from subword units, so as to allow
the approach to generalize to LV-ASR. In a subword based
approach, usually all units make an equal contribution to the
eventual word confidence score (e.g. [1], [2]). This paper pres-
ents a study to validate the assumption that some subwords
possess more discriminative ability than others and thus ought
to have a higher contribution.

We apply the conventional two-pass scoring procedure: in the
first stage a recognition is performed, on the basis of which
each time frame of the input utterance is given a phone label.
In the second pass, the labeled feature vectors are scored by
their respective set of dedicated verification models to compute
frame-based likelihood ratios. These are then propagated to a
phone level normalization and eventually to word confidence
scores.
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Concerning this last step we will examine the following hy-
potheses in this work:

H(1) Normalizing phone confidence scores improves their
discriminative capability,  resulting in a reduction of the
Confidence Error Rate (CER, see [7])

H(2) The CER can be reduced further by emphasizing the
scores of the most discriminative phones of each word
separately.

This paper is organized as follows. In Section 2 we discuss in
general terms the training and scoring phase of the frame-based
likelihood measure and propose a procedure to assess weight-
ing coefficients for phone confidence scores. In Section 3 we
describe the experiments to validate our hypotheses and pres-
ent the results we obtained. Finally, in Section 4, we summa-
rize and discuss our most important findings.

2. WEIGHTING PHONE CONFIDENCE

2.1 Training target- and anti-models

Recent studies have shown that phone likelihood ratios seem
to perform best when the anti-model is trained on speech that
gave rise to confusions. However, there seem to be two differ-
ent approaches for selecting training tokens for the anti-model:
(1) There are rule-based methods, in which all subword units
are treated in the same way. For instance, [6] compared the
performance of anti-models trained on material from instances
of all other subword units, from instances of the same subword
unit in other contexts, and from combinations of these selec-
tion rules. (2) There are also completely data driven ap-
proaches, that select only those instances where previous rec-
ognition has failed, e.g. [4]. When training anti-models for a
small vocabulary task like CDR a third, intermediate, option is
available: for our work we have derived selection rules from
word level confusion matrices. This method combines the ad-
vantages of both approaches: the confusion matrices show real
confusions; therefore we know the words which are relatively
easy to confuse. The rules, however, generalize for the in-
stances, making the procedure more robust for mismatch be-
tween train and test conditions. In this way we intend to maxi-
mize the discriminative power of the anti-models.

For the CDR experiments described in this paper, we used the
confusion matrix of an experiment with an existing HMM
phone based digit recognizer. The ten digits of Dutch can be
described by means of 18 context independent phones. It ap-
peared that most confusion occurred between the four digits
(and one variant) with the vowel /e:/. Therefore, the transcrip-
tion of the training corpus was adapted in such a way that digit
dependent variants were created for the vowel /e:/. Although
we used the original 18 models as our target-models, this al-
lowed us to train 22 digit dependent anti-models for the most
confusable phones.

The training procedure of anti-models is as follows. The rec-
ognizer is used to assign a phone label to each frame of the
train material by forced alignment. Then, for each phone class,
the labels are substituted by one of three classes: ‘target’, ‘anti’
and ‘garbage’, according to the selection rule of the phone
under consideration. A single state anti-model is trained on all
acoustic vectors with an ‘anti’ label. No intermediate align-
ments are to be made during this training procedure. In our
approach, the target models are just the recognition models.

2.2 Frame-based phone scores

The target- and anti-models are used to score a corpus that has
been recognized in a conventional way. First, the speech rec-
ognizer is used to obtain a phone level segmentation. Next, we
compute the likelihood scores of the target and anti phone by
means of their scoring models. Finally, a likelihood ratio score
for each frame is computed.

Now that each frame has a phone dependent likelihood ratio,
the scores must be combined into a word score. As in [1] we
do this through an intermediate phone level normalization. A
state level normalization might be an attractive alternative for
its local specialization. However, stability of the scores be-
comes a crucial factor when the scores are propagated to
higher levels, as a state score could have been based on a sin-
gle frame. For a task like CDR, one might also choose to com-
bine frame scores to word scores directly.

The raw phone-based score used in this work is the arithmetic
average of the frame likelihood ratio scores:

 (4)

where CM(pi) is the confidence score for phone pi., to which
frames ts up to te were assigned. LRi(ts)…LRi(te) are the likeli-
hood ratio scores of these frames, as computed with the target
and anti-model of pi. (4) implements time normalization intrin-
sically. Sigmoid transformations of CM(pi) did not have much
effect on the performance.

2.3 Discriminative ability

In this paper we want to investigate whether the confidence
scores of some phones have more discriminative power than
those of others; in other words, they are better predictors
whether the word was realized or not. We will refer to this as
the discriminative ability of the phone.

Assessing the discriminative ability of each phone is not triv-
ial. In this study, we base it on the prior distribution of phone
scores in correctly and incorrectly recognized words. To this
aim we score a recognition result from some experiment on a
development corpus, using the procedure as described in Sec-
tion 2.2. For all phones pw(i) (the i-th phone of digit w, short-
hand notation pi), we split the confidence scores into two cate-
gories Iw,i and Cw,i:

(5a, 5b)

which are the sets of phone scores of incorrectly (winc) and
correctly (wcor) recognized digit tokens. Next, we can compute
their means µC and µI and standard deviations σC and σI to
express

(6)

Zw,i  (shortly Zi) represents the distance between the means of
the two sets in terms of their standard deviations. The distribu-
tion of the scores is assumed to be normal, and therefore Zi is a
measure for the amount of overlap of Ii and Ci. If this overlap
is small, we are able to separate the sets quite accurately by a
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threshold that is set a priori. In other words, Zi represents the
discriminative ability of CM(pi).

2.4 Weighting coefficients

We investigate the assumption that phone confidence should
not contribute in equal proportion to the final word confi-
dence. It seems plausible to weigh each phone score with a
coefficient that is related to the discriminative ability of the
phone score. So we propose a word dependent vector of
weighting coefficients, Rw for each word w

(7)

(8)

where w consists of M phones. The word confidence score
CM(w) then becomes:

(9)

The ri in (9) must depend on the discriminative ability of the
phones. Thus we define

(10)

Exponent λ controls the relative contribution of the most dis-
criminative phone score(s). If λ = 0, all phones have equal
contributions. If λ = 1 the contributions of the phones are de-
termined by their relative discriminative ability in the word.
For λ → ∞ the most discriminative phone dominates the con-
fidence score for the words.

2.5 Accept or reject?

In order to make accept/reject decisions, we need to determine
some threshold τ to compare the confidence score to. The deci-
sion then becomes

(11)

Setting a threshold introduces two kinds of errors. The first,
False Accept Rate (FAR) is the rate of falsely accepted items.
The second, False Reject Rate (FRR) is the rate of falsely re-
jected items. In this study, the threshold is optimized by mini-
mizing the confidence error rate (CERα):

(12)

in which α controls the operating point (FAR, FRR). If α is set
to be the a-priori word recognition accuracy, then CERα is
actually the CER as proposed in [7]. In this way we find the
threshold that is the best compromise between insertions and
substitutions on the one hand, and deletions on the other.

2.6 Experiment setup

Experiments were carried out on a corpus consisting of three
Dutch spoken connected digit databases: Polyphone, SESP and
Casimir. All these corpora contain telephone speech recorded
in a wide variety of acoustic conditions. The acoustic features
were 14 Mel-scale Frequency Cepstrum Coefficients (c0
…c13), and their first and second order derivatives, i.e. 42
features. These vectors were based on 16 ms frames and a 10
ms frame shift. Phone HMMs were trained in a conventional
way. Each state pdf was a mixture of maximally 32 Gaussian
densities. The training set consisted of 9753 utterances with an
average of 6.3 digits per utterance.

The weighting coefficients and threshold value were optimized
on the recognition result of an independent development cor-
pus (9155 digit strings), according to the proposed procedure.
The test results were obtained on an unseen test corpus of
10.000 utterances (76682 digits).

The baseline performance of the models on the development
set was 2.78% receiver Word Error Rate (WERrec) (i.e. number
of substitutions + insertions / total number of recognized
words) and 15.3% receiver Sentence Error Rate (SERrec) (i.e.
the number of incorrectly recognized utterances / total number
of utterances). These receiver error rates were used as the prior
probabilities α in (12) for the evaluation, by computing
CER0.0278 and CER0.153 at word and sentence level respectively.

3. RESULTS

This section reports on the experiments done with the pro-
posed Confidence Measure for Utterance Verification, where it
is the system’s task to decide on whether to accept or reject the
recognized digit.

hard error rate (in %) soft error rate (in %)
λ CER0.0278 FAR FRR CER0.0278 FAR FRR

= 0 2.72 88.19 0.28 2.71 88.45 0.26

= 1 2.60 77.78 0.45 2.58 83.08 0.28

→∞ 2.70 95.72 0.05 2.63 88.82 0.16

opt 2.55 78.10 0.38 2.53 83.19 0.22

Table 1. Error rates for λ=0, λ=1, λ→∞ and λ opti-
mized per digit

Table 1 shows the False Accept Rate (FAR),  False Reject Rate
(FRR) and Confidence Error Rate (CER) for different values
of λ on word level. The left hand part of the table contains the
hard decision error rates, where all decision parameters, in-
cluding threshold T of (11) and (12), are estimated on the in-
dependent development corpus. The numbers in the right hand
part are the results of  threshold optimization on the test set.

From Table 1, it is clear that weighting the phone scores ac-
cording to their discriminative ability (λ=1) outperforms the
baseline situation of equal contribution (λ=0) significantly. It
yields a relative word level CER improvement of 4%. There-
fore, the first hypothesis is strongly supported. The third row
shows the opposite extreme, where the score of the most dis-
criminative phone has an exclusive vote in the confidence
score of the whole word. Obviously, the CER did not drop
below the baseline situation. The row labeled ‘opt’ represents
the performance of the confidence measure with a weighting
vector with λ-values optimized per word, i.e. minimal word-
dependent CERs. Each digit required a different optimal value,
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ranging from 0.75 to 6. This fine-tuning resulted in a further
relative improvement of 2% relative.

Comparison of hard and soft decision error rates gives insight
in the method’s sensitivity to threshold optimization on a par-
ticular test set. Although the FAR and FRR have rather differ-
ent values, it seems that the CER has been estimated quite
accurately. There is, however, an exception for the case λ→∞,
where the soft decision CER is almost 3% lower than the hard
decision CER.

Finally, we report that the sentence level CER0.153 decreased by
12%, viz. from 18.8% (for λ=0) to 16.5% (for λ optimized).

Figure 1 shows the Detection Error Trade-off (DET, see [3])
curve around the optimization points of Table 1.  As can be
seen, the improvement resulting from phone score weighting
holds over a broad score domain around the operating points.

4. DISCUSSION

The evaluation of the experiments clearly shows that phone
confidence scores make different contributions to the word
confidence score. Discriminative ability has proven to be a
strong criterion to base the weighting coefficients upon. It has
also become apparent that emphasizing these coefficients, by
fine-tuning λ of (7) per word gives an additional CER im-
provement.

It is remarkable that the CM that was solely based on the most
discriminative phone score (λ→∞) seems to outperform the
measure in which all phone scores were weighted equally
(λ=0). After all, decisions based on more information are usu-
ally better. One possible explanation is that the phones always
appear in the same digit context. The score may be about more
than just the phone itself; the score implicitly takes some of the
context into account as well. Still, as we already noted in the
previous section, this score seems to be more sensitive to
threshold optimization on the specific test set. Research in a
large vocabulary task environment is expected to shed more
light on this matter.

The hypotheses we stated are –at least in principle- independ-
ent of the task domain. Hence, it will become interesting to
scale up the finding that the hypotheses are validated for a
CDR task to the LV-ASR domain. This implies two major
challenges:

1. generalization for our selection rules for the training ma-
terial of the anti-models. A mixed approach of data-driven
and rule-based criteria is founded on observed and there-
fore realistic errors on the one hand, yet is general enough
to take account for avoiding potential errors on the other.

2. assessment of the discriminative ability of each phone
confidence score. Further research is required to develop
the proposed method from a word dependent level to the
level of subword units that are less task-dependent.

5. CONCLUSION

Summarizing our most important results, we can conclude that

• we have proposed the idea for a new, semi-data driven
approach of selecting training material for anti-models by
making use of a word confusion matrix,

• we have verified the hypothesis that some phone scores
possess more distinctive properties than others. A word
confidence measure should rely heavier on the phone
scores with a higher discriminative ability,

• we have presented a method to determine the discrimina-
tive ability of phone confidence scores in the small vo-
cabulary ASR domain, and

• applying these findings in a Connected Digit Recognition
task gave a relative Confidence Error Rate improvement
of 6% at word level and 11% at sentence level.
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Figure 1. Detection Error Trade-off (DET)-curves
for λ=0, λ=1, λ→∞ (“inf”) and λ optimized per digit
with hard decision (�) and soft decision (�) operating
points.
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